Cargando…
Distributed Deep Fusion Predictor for a Multi-Sensor System Based on Causality Entropy
Trend prediction based on sensor data in a multi-sensor system is an important topic. As the number of sensors increases, we can measure and store more and more data. However, the increase in data has not effectively improved prediction performance. This paper focuses on this problem and presents a...
Autores principales: | Jin, Xue-Bo, Yu, Xing-Hong, Su, Ting-Li, Yang, Dan-Ni, Bai, Yu-Ting, Kong, Jian-Lei, Wang, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916859/ https://www.ncbi.nlm.nih.gov/pubmed/33670098 http://dx.doi.org/10.3390/e23020219 |
Ejemplares similares
-
Semi-Supervised Segmentation Framework Based on Spot-Divergence Supervoxelization of Multi-Sensor Fusion Data for Autonomous Forest Machine Applications
por: Kong, Jian-lei, et al.
Publicado: (2018) -
A Weighted Belief Entropy-Based Uncertainty Measure for Multi-Sensor Data Fusion
por: Tang, Yongchuan, et al.
Publicado: (2017) -
Random Number Generation Based on Heterogeneous Entropy Sources Fusion in Multi-Sensor Networks
por: Zhang, Jinxin, et al.
Publicado: (2023) -
Multi-Sensor Image Fusion Method for Defect Detection in Powder Bed Fusion
por: Peng, Xing, et al.
Publicado: (2022) -
Entanglement distribution in multi-particle systems in terms of unified entropy
por: Luo, Yu, et al.
Publicado: (2017)