Cargando…
Random-Walk Laplacian for Frequency Analysis in Periodic Graphs
This paper presents the benefits of using the random-walk normalized Laplacian matrix as a graph-shift operator and defines the frequencies of a graph by the eigenvalues of this matrix. A criterion to order these frequencies is proposed based on the Euclidean distance between a graph signal and its...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916899/ https://www.ncbi.nlm.nih.gov/pubmed/33670095 http://dx.doi.org/10.3390/s21041275 |
Sumario: | This paper presents the benefits of using the random-walk normalized Laplacian matrix as a graph-shift operator and defines the frequencies of a graph by the eigenvalues of this matrix. A criterion to order these frequencies is proposed based on the Euclidean distance between a graph signal and its shifted version with the transition matrix as shift operator. Further, the frequencies of a periodic graph built through the repeated concatenation of a basic graph are studied. We show that when a graph is replicated, the graph frequency domain is interpolated by an upsampling factor equal to the number of replicas of the basic graph, similarly to the effect of zero-padding in digital signal processing. |
---|