Cargando…

Effect of Fumed Silica Nanoparticles on Ultraviolet Aging Resistance of Bitumen

In this study, bitumen modified by fumed silica nanoparticles was characterized through dynamic shear rheometer tests, scanning electron microscopy, and Fourier transform infrared spectroscopy. The fumed silica nanoparticles were used in three different ratios, i.e., 0.1, 0.2 and 0.3 wt.-% of bitume...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheraghian, Goshtasp, Wistuba, Michael P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916902/
https://www.ncbi.nlm.nih.gov/pubmed/33670134
http://dx.doi.org/10.3390/nano11020454
Descripción
Sumario:In this study, bitumen modified by fumed silica nanoparticles was characterized through dynamic shear rheometer tests, scanning electron microscopy, and Fourier transform infrared spectroscopy. The fumed silica nanoparticles were used in three different ratios, i.e., 0.1, 0.2 and 0.3 wt.-% of bitumen. Specifically, the modified bitumen characteristics were studied after laboratory aging by analyzing the chemical composition and rheological properties. From the determination of oxidation degree and carbonyl index it was found that the resistance of the modified bitumen to ultraviolet aging was improved with the increasing nanoparticle content. In bitumen modified by fumed silica nanoparticles, the nanoparticles were well dispersed. Moreover, the results illustrated that the bitumen properties were improved, and the improvement effect of 0.1 wt.-% fumed silica nanoparticles was more distinct than the higher concentrations.