Cargando…
Learning From Limited Data: Towards Best Practice Techniques for Antimicrobial Resistance Prediction From Whole Genome Sequencing Data
Antimicrobial resistance prediction from whole genome sequencing data (WGS) is an emerging application of machine learning, promising to improve antimicrobial resistance surveillance and outbreak monitoring. Despite significant reductions in sequencing cost, the availability and sampling diversity o...
Autores principales: | Lüftinger, Lukas, Májek, Peter, Beisken, Stephan, Rattei, Thomas, Posch, Andreas E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7917081/ https://www.ncbi.nlm.nih.gov/pubmed/33659219 http://dx.doi.org/10.3389/fcimb.2021.610348 |
Ejemplares similares
-
Metagenomic Antimicrobial Susceptibility Testing from Simulated Native Patient Samples
por: Lüftinger, Lukas, et al.
Publicado: (2023) -
Genome-Wide Mutation Scoring for Machine-Learning-Based Antimicrobial Resistance Prediction
por: Májek, Peter, et al.
Publicado: (2021) -
Predictive Antibiotic Susceptibility Testing by Next-Generation Sequencing for Periprosthetic Joint Infections: Potential and Limitations
por: Lüftinger, Lukas, et al.
Publicado: (2021) -
Automated antimicrobial susceptibility testing and antimicrobial resistance genotyping using Illumina and Oxford Nanopore Technologies sequencing data among Enterobacteriaceae
por: Conzemius, Rick, et al.
Publicado: (2022) -
Core Genome Multilocus Sequence Typing and Antibiotic Susceptibility Prediction from Whole-Genome Sequence Data of Multidrug-Resistant Pseudomonas aeruginosa Isolates
por: Cunningham, Scott A., et al.
Publicado: (2022)