Cargando…

Sevoflurane and Desflurane Exposure Enhanced Cell Proliferation and Migration in Ovarian Cancer Cells via miR-210 and miR-138 Downregulation

Inhalational anaesthetics were previously reported to promote ovarian cancer malignancy, but underlying mechanisms remain unclear. The present study aims to investigate the role of sevoflurane- or desflurane-induced microRNA (miRNA) changes on ovarian cancer cell behaviour. The cultured SKOV3 cells...

Descripción completa

Detalles Bibliográficos
Autores principales: Ishikawa, Masashi, Iwasaki, Masae, Zhao, Hailin, Saito, Junichi, Hu, Cong, Sun, Qizhe, Sakamoto, Atsuhiro, Ma, Daqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7917656/
https://www.ncbi.nlm.nih.gov/pubmed/33673181
http://dx.doi.org/10.3390/ijms22041826
Descripción
Sumario:Inhalational anaesthetics were previously reported to promote ovarian cancer malignancy, but underlying mechanisms remain unclear. The present study aims to investigate the role of sevoflurane- or desflurane-induced microRNA (miRNA) changes on ovarian cancer cell behaviour. The cultured SKOV3 cells were exposed to 3.6% sevoflurane or 10.3% desflurane for 2 h. Expression of miR-138, -210 and -335 was determined with qRT-PCR. Cell proliferation and migration were assessed with wound healing assay, Ki67 staining and Cell Counting Kit-8 (CCK8) assay with or without mimic miR-138/-210 transfections. The miRNA downstream effector, hypoxia inducible factor-1α (HIF-1α), was also analysed with immunofluorescent staining. Sevoflurane or desflurane exposure to cancer cells enhanced their proliferation and migration. miR-138 expression was suppressed by both sevoflurane and desflurane, while miR-210 expression was suppressed only by sevoflurane. miR-335 expression was not changed by either sevoflurane or desflurane exposure. The administration of mimic miR-138 or -210 reduced the promoting effects of sevoflurane and desflurane on cancer cell proliferation and migration, in line with the HIF-1α expression changes. These data indicated that inhalational agents sevoflurane and desflurane enhanced ovarian cancer cell malignancy via miRNA deactivation and HIF-1α. The translational value of this work needs further study.