Cargando…
Porous Silicon Optical Devices: Recent Advances in Biosensing Applications
This review summarizes the leading advancements in porous silicon (PSi) optical-biosensors, achieved over the past five years. The cost-effective fabrication process, the high internal surface area, the tunable pore size, and the photonic properties made the PSi an appealing transducing substrate fo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7917735/ https://www.ncbi.nlm.nih.gov/pubmed/33668616 http://dx.doi.org/10.3390/s21041336 |
Sumario: | This review summarizes the leading advancements in porous silicon (PSi) optical-biosensors, achieved over the past five years. The cost-effective fabrication process, the high internal surface area, the tunable pore size, and the photonic properties made the PSi an appealing transducing substrate for biosensing purposes, with applications in different research fields. Different optical PSi biosensors are reviewed and classified into four classes, based on the different biorecognition elements immobilized on the surface of the transducing material. The PL signal modulation and the effective refractive index changes of the porous matrix are the main optical transduction mechanisms discussed herein. The approaches that are commonly employed to chemically stabilize and functionalize the PSi surface are described. |
---|