Cargando…
Blind Deconvolution Based on Compressed Sensing with bi-l(0)-l(2)-norm Regularization in Light Microscopy Image
Blind deconvolution of light microscopy images could improve the ability of distinguishing cell-level substances. In this study, we investigated the blind deconvolution framework for a light microscope image, which combines the benefits of bi-l(0)-l(2)-norm regularization with compressed sensing and...
Autores principales: | Kim, Kyuseok, Kim, Ji-Youn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7917747/ https://www.ncbi.nlm.nih.gov/pubmed/33673166 http://dx.doi.org/10.3390/ijerph18041789 |
Ejemplares similares
-
Compressed Imaging Reconstruction Based on Block Compressed Sensing with Conjugate Gradient Smoothed l(0) Norm
por: Zhang, Yongtian, et al.
Publicado: (2023) -
Gradient Projection with Approximate L(0) Norm Minimization for Sparse Reconstruction in Compressed Sensing
por: Wei, Ziran, et al.
Publicado: (2018) -
A Regularized Weighted Smoothed L(0) Norm Minimization Method for Underdetermined Blind Source Separation
por: Wang, Linyu, et al.
Publicado: (2018) -
An Algorithm of l(1)-Norm and l(0)-Norm Regularization Algorithm for CT Image Reconstruction from Limited Projection
por: Li, Xiezhang, et al.
Publicado: (2020) -
Blind deconvolution in autocorrelation inversion for multiview light‐sheet microscopy
por: Corbetta, Elena, et al.
Publicado: (2022)