Cargando…
Deep Learning Based HPV Status Prediction for Oropharyngeal Cancer Patients
SIMPLE SUMMARY: Determination of human papillomavirus (HPV) status for oropharyngeal cancer patients depicts a essential diagnostic factor and is important for treatment decisions. Current histological methods are invasive, time consuming and costly. We tested the ability of deep learning models for...
Autores principales: | Lang, Daniel M., Peeken, Jan C., Combs, Stephanie E., Wilkens, Jan J., Bartzsch, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7917758/ https://www.ncbi.nlm.nih.gov/pubmed/33668646 http://dx.doi.org/10.3390/cancers13040786 |
Ejemplares similares
-
Predicting HPV association using deep learning and regular H&E stains allows granular stratification of oropharyngeal cancer patients
por: Klein, Sebastian, et al.
Publicado: (2023) -
Impact of HPV in Oropharyngeal Cancer
por: Marklund, Linda, et al.
Publicado: (2011) -
Clinical microbeam radiation therapy with a compact source: specifications of the line-focus X-ray tube
por: Winter, Johanna, et al.
Publicado: (2020) -
The importance of planning CT-based imaging features for machine learning-based prediction of pain response
por: Llorián-Salvador, Óscar, et al.
Publicado: (2023) -
Treatment Planning Study for Microbeam Radiotherapy Using Clinical Patient Data
por: Kraus, Kim Melanie, et al.
Publicado: (2022)