Cargando…
A Framework for Instantaneous Driver Drowsiness Detection Based on Improved HOG Features and Naïve Bayesian Classification
Due to their high distinctiveness, robustness to illumination and simple computation, Histogram of Oriented Gradient (HOG) features have attracted much attention and achieved remarkable success in many computer vision tasks. In this paper, an innovative framework for driver drowsiness detection is p...
Autores principales: | Bakheet, Samy, Al-Hamadi, Ayoub |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7917813/ https://www.ncbi.nlm.nih.gov/pubmed/33672978 http://dx.doi.org/10.3390/brainsci11020240 |
Ejemplares similares
-
Automatic detection of COVID-19 using pruned GLCM-Based texture features and LDCRF classification
por: Bakheet, Samy, et al.
Publicado: (2021) -
A deep neural framework for real-time vehicular accident detection based on motion temporal templates
por: Bakheet, Samy, et al.
Publicado: (2022) -
Computer-Aided Diagnosis of Malignant Melanoma Using Gabor-Based Entropic Features and Multilevel Neural Networks
por: Bakheet, Samy, et al.
Publicado: (2020) -
Non-Invasive Driver Drowsiness Detection System
por: Siddiqui, Hafeez Ur Rehman, et al.
Publicado: (2021) -
Real-Time Machine Learning-Based Driver Drowsiness Detection Using Visual Features
por: Albadawi, Yaman, et al.
Publicado: (2023)