Cargando…
Biomechanical Evaluation of Extramedullary Versus Intramedullary Reduction in Unstable Femoral Trochanteric Fractures
INTRODUCTION: The failure rate of operations involving the cephalomedullary nail technique for unstable femoral trochanteric fractures is 3-12%. Changing the reduction strategy may improve the stability. This study aimed to confirm whether reducing the proximal fragment with the medial calcar contac...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7917859/ https://www.ncbi.nlm.nih.gov/pubmed/33717634 http://dx.doi.org/10.1177/2151459321998611 |
_version_ | 1783657794554036224 |
---|---|
author | Kawamura, Tadashi Minehara, Hiroaki Tazawa, Ryo Matsuura, Terumasa Sakai, Rina Takaso, Masashi |
author_facet | Kawamura, Tadashi Minehara, Hiroaki Tazawa, Ryo Matsuura, Terumasa Sakai, Rina Takaso, Masashi |
author_sort | Kawamura, Tadashi |
collection | PubMed |
description | INTRODUCTION: The failure rate of operations involving the cephalomedullary nail technique for unstable femoral trochanteric fractures is 3-12%. Changing the reduction strategy may improve the stability. This study aimed to confirm whether reducing the proximal fragment with the medial calcar contact, as opposed to utilizing an intramedullary reduction, would improve the stability of such fractures. MATERIALS AND METHODS: The unstable femoral trochanteric fracture model was created with fixation by cephalomedullary nails in 22 imitation bones. The 2 reduction patterns were as follows: one was with the proximal head-neck fragment external to the distal bone in the frontal plane and anterior in the sagittal plane as “Extramedullary,” while the other was the opposite reduction position, that is, bone in the frontal plane and sagittal plane as “Intramedullary.” We evaluated the tip-apex distance, compression stiffness, change in femoral neck-shaft angle, amount of blade telescoping, and diameter of the distal screw hole after the compression test. Statistical analysis was conducted using the Mann-Whitney U test. RESULTS: No significant differences were seen in compression stiffness (p = 0.804) and femoral neck-shaft angle change (p = 0.644). Although the “Extramedullary” tip-apex distance was larger than the “Intramedullary” distance (p = 0.001), it indicated clinically acceptable lengths. The amount of blade telescoping and the distal screw hole diameter were significantly larger in “Intramedullary” than in “Extramedullary” (p < 0.001, p = 0.019, respectively). Our results showed that “Intramedullary” had significantly larger blade telescoping and distal screw hole diameters than “Extramedullary,” and contrary to our hypothesis, no significant differences were seen in compression stiffness and femoral neck-shaft angle change. CONCLUSIONS: As opposed to the “Intramedullary” reduction pattern, the biomechanical properties of the “Extramedullary” reduction pattern improved stability during testing and decreased sliding. |
format | Online Article Text |
id | pubmed-7917859 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-79178592021-03-11 Biomechanical Evaluation of Extramedullary Versus Intramedullary Reduction in Unstable Femoral Trochanteric Fractures Kawamura, Tadashi Minehara, Hiroaki Tazawa, Ryo Matsuura, Terumasa Sakai, Rina Takaso, Masashi Geriatr Orthop Surg Rehabil Original Manuscript INTRODUCTION: The failure rate of operations involving the cephalomedullary nail technique for unstable femoral trochanteric fractures is 3-12%. Changing the reduction strategy may improve the stability. This study aimed to confirm whether reducing the proximal fragment with the medial calcar contact, as opposed to utilizing an intramedullary reduction, would improve the stability of such fractures. MATERIALS AND METHODS: The unstable femoral trochanteric fracture model was created with fixation by cephalomedullary nails in 22 imitation bones. The 2 reduction patterns were as follows: one was with the proximal head-neck fragment external to the distal bone in the frontal plane and anterior in the sagittal plane as “Extramedullary,” while the other was the opposite reduction position, that is, bone in the frontal plane and sagittal plane as “Intramedullary.” We evaluated the tip-apex distance, compression stiffness, change in femoral neck-shaft angle, amount of blade telescoping, and diameter of the distal screw hole after the compression test. Statistical analysis was conducted using the Mann-Whitney U test. RESULTS: No significant differences were seen in compression stiffness (p = 0.804) and femoral neck-shaft angle change (p = 0.644). Although the “Extramedullary” tip-apex distance was larger than the “Intramedullary” distance (p = 0.001), it indicated clinically acceptable lengths. The amount of blade telescoping and the distal screw hole diameter were significantly larger in “Intramedullary” than in “Extramedullary” (p < 0.001, p = 0.019, respectively). Our results showed that “Intramedullary” had significantly larger blade telescoping and distal screw hole diameters than “Extramedullary,” and contrary to our hypothesis, no significant differences were seen in compression stiffness and femoral neck-shaft angle change. CONCLUSIONS: As opposed to the “Intramedullary” reduction pattern, the biomechanical properties of the “Extramedullary” reduction pattern improved stability during testing and decreased sliding. SAGE Publications 2021-02-25 /pmc/articles/PMC7917859/ /pubmed/33717634 http://dx.doi.org/10.1177/2151459321998611 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Original Manuscript Kawamura, Tadashi Minehara, Hiroaki Tazawa, Ryo Matsuura, Terumasa Sakai, Rina Takaso, Masashi Biomechanical Evaluation of Extramedullary Versus Intramedullary Reduction in Unstable Femoral Trochanteric Fractures |
title | Biomechanical Evaluation of Extramedullary Versus Intramedullary Reduction in Unstable Femoral Trochanteric Fractures |
title_full | Biomechanical Evaluation of Extramedullary Versus Intramedullary Reduction in Unstable Femoral Trochanteric Fractures |
title_fullStr | Biomechanical Evaluation of Extramedullary Versus Intramedullary Reduction in Unstable Femoral Trochanteric Fractures |
title_full_unstemmed | Biomechanical Evaluation of Extramedullary Versus Intramedullary Reduction in Unstable Femoral Trochanteric Fractures |
title_short | Biomechanical Evaluation of Extramedullary Versus Intramedullary Reduction in Unstable Femoral Trochanteric Fractures |
title_sort | biomechanical evaluation of extramedullary versus intramedullary reduction in unstable femoral trochanteric fractures |
topic | Original Manuscript |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7917859/ https://www.ncbi.nlm.nih.gov/pubmed/33717634 http://dx.doi.org/10.1177/2151459321998611 |
work_keys_str_mv | AT kawamuratadashi biomechanicalevaluationofextramedullaryversusintramedullaryreductioninunstablefemoraltrochantericfractures AT mineharahiroaki biomechanicalevaluationofextramedullaryversusintramedullaryreductioninunstablefemoraltrochantericfractures AT tazawaryo biomechanicalevaluationofextramedullaryversusintramedullaryreductioninunstablefemoraltrochantericfractures AT matsuuraterumasa biomechanicalevaluationofextramedullaryversusintramedullaryreductioninunstablefemoraltrochantericfractures AT sakairina biomechanicalevaluationofextramedullaryversusintramedullaryreductioninunstablefemoraltrochantericfractures AT takasomasashi biomechanicalevaluationofextramedullaryversusintramedullaryreductioninunstablefemoraltrochantericfractures |