Cargando…
iPSCs in Modeling and Therapy of Osteoarthritis
Osteoarthritis (OA) belongs to chronic degenerative disorders and is often a leading cause of disability in elderly patients. Typically, OA is manifested by articular cartilage erosion, pain, stiffness, and crepitus. Currently, the treatment options are limited, relying mostly on pharmacological the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7917981/ https://www.ncbi.nlm.nih.gov/pubmed/33673154 http://dx.doi.org/10.3390/biomedicines9020186 |
_version_ | 1783657823283970048 |
---|---|
author | Csobonyeiova, Maria Polak, Stefan Nicodemou, Andreas Zamborsky, Radoslav Danisovic, Lubos |
author_facet | Csobonyeiova, Maria Polak, Stefan Nicodemou, Andreas Zamborsky, Radoslav Danisovic, Lubos |
author_sort | Csobonyeiova, Maria |
collection | PubMed |
description | Osteoarthritis (OA) belongs to chronic degenerative disorders and is often a leading cause of disability in elderly patients. Typically, OA is manifested by articular cartilage erosion, pain, stiffness, and crepitus. Currently, the treatment options are limited, relying mostly on pharmacological therapy, which is often related to numerous complications. The proper management of the disease is challenging because of the poor regenerative capacity of articular cartilage. During the last decade, cell-based approaches such as implantation of autologous chondrocytes or mesenchymal stem cells (MSCs) have shown promising results. However, the mentioned techniques face their hurdles (cell harvesting, low proliferation capacity). The invention of induced pluripotent stem cells (iPSCs) has created new opportunities to increase the efficacy of the cartilage healing process. iPSCs may represent an unlimited source of chondrocytes derived from a patient’s somatic cells, circumventing ethical and immunological issues. Aside from the regenerative potential of iPSCs, stem cell-derived cartilage tissue models could be a useful tool for studying the pathological process of OA. In our recent article, we reviewed the progress in chondrocyte differentiation techniques, disease modeling, and the current status of iPSC-based regenerative therapy of OA. |
format | Online Article Text |
id | pubmed-7917981 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79179812021-03-02 iPSCs in Modeling and Therapy of Osteoarthritis Csobonyeiova, Maria Polak, Stefan Nicodemou, Andreas Zamborsky, Radoslav Danisovic, Lubos Biomedicines Review Osteoarthritis (OA) belongs to chronic degenerative disorders and is often a leading cause of disability in elderly patients. Typically, OA is manifested by articular cartilage erosion, pain, stiffness, and crepitus. Currently, the treatment options are limited, relying mostly on pharmacological therapy, which is often related to numerous complications. The proper management of the disease is challenging because of the poor regenerative capacity of articular cartilage. During the last decade, cell-based approaches such as implantation of autologous chondrocytes or mesenchymal stem cells (MSCs) have shown promising results. However, the mentioned techniques face their hurdles (cell harvesting, low proliferation capacity). The invention of induced pluripotent stem cells (iPSCs) has created new opportunities to increase the efficacy of the cartilage healing process. iPSCs may represent an unlimited source of chondrocytes derived from a patient’s somatic cells, circumventing ethical and immunological issues. Aside from the regenerative potential of iPSCs, stem cell-derived cartilage tissue models could be a useful tool for studying the pathological process of OA. In our recent article, we reviewed the progress in chondrocyte differentiation techniques, disease modeling, and the current status of iPSC-based regenerative therapy of OA. MDPI 2021-02-12 /pmc/articles/PMC7917981/ /pubmed/33673154 http://dx.doi.org/10.3390/biomedicines9020186 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Csobonyeiova, Maria Polak, Stefan Nicodemou, Andreas Zamborsky, Radoslav Danisovic, Lubos iPSCs in Modeling and Therapy of Osteoarthritis |
title | iPSCs in Modeling and Therapy of Osteoarthritis |
title_full | iPSCs in Modeling and Therapy of Osteoarthritis |
title_fullStr | iPSCs in Modeling and Therapy of Osteoarthritis |
title_full_unstemmed | iPSCs in Modeling and Therapy of Osteoarthritis |
title_short | iPSCs in Modeling and Therapy of Osteoarthritis |
title_sort | ipscs in modeling and therapy of osteoarthritis |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7917981/ https://www.ncbi.nlm.nih.gov/pubmed/33673154 http://dx.doi.org/10.3390/biomedicines9020186 |
work_keys_str_mv | AT csobonyeiovamaria ipscsinmodelingandtherapyofosteoarthritis AT polakstefan ipscsinmodelingandtherapyofosteoarthritis AT nicodemouandreas ipscsinmodelingandtherapyofosteoarthritis AT zamborskyradoslav ipscsinmodelingandtherapyofosteoarthritis AT danisoviclubos ipscsinmodelingandtherapyofosteoarthritis |