Cargando…
Janus Kinases in Leukemia
SIMPLE SUMMARY: Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway is a crucial cell signaling pathway that drives the development, differentiation, and function of immune cells and has an important role in blood cell formation. Mutations targeting this pathway can le...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918039/ https://www.ncbi.nlm.nih.gov/pubmed/33672930 http://dx.doi.org/10.3390/cancers13040800 |
Sumario: | SIMPLE SUMMARY: Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway is a crucial cell signaling pathway that drives the development, differentiation, and function of immune cells and has an important role in blood cell formation. Mutations targeting this pathway can lead to overproduction of these cell types, giving rise to various hematological diseases. This review summarizes pathogenic JAK/STAT activation mechanisms and links known mutations and translocations to different leukemia. In addition, the review discusses the current therapeutic approaches used to inhibit constitutive, cytokine-independent activation of the pathway and the prospects of developing more specific potent JAK inhibitors. ABSTRACT: Janus kinases (JAKs) transduce signals from dozens of extracellular cytokines and function as critical regulators of cell growth, differentiation, gene expression, and immune responses. Deregulation of JAK/STAT signaling is a central component in several human diseases including various types of leukemia and other malignancies and autoimmune diseases. Different types of leukemia harbor genomic aberrations in all four JAKs (JAK1, JAK2, JAK3, and TYK2), most of which are activating somatic mutations and less frequently translocations resulting in constitutively active JAK fusion proteins. JAKs have become important therapeutic targets and currently, six JAK inhibitors have been approved by the FDA for the treatment of both autoimmune diseases and hematological malignancies. However, the efficacy of the current drugs is not optimal and the full potential of JAK modulators in leukemia is yet to be harnessed. This review discusses the deregulation of JAK-STAT signaling that underlie the pathogenesis of leukemia, i.e., mutations and other mechanisms causing hyperactive cytokine signaling, as well as JAK inhibitors used in clinic and under clinical development. |
---|