Cargando…
Fully Automatic Fall Risk Assessment Based on a Fast Mobility Test
This paper presents a fall risk assessment approach based on a fast mobility test, automatically evaluated using a low-cost, scalable system for the recording and analysis of body movement. This mobility test has never before been investigated as a sole source of data for fall risk assessment. It ca...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918104/ https://www.ncbi.nlm.nih.gov/pubmed/33668626 http://dx.doi.org/10.3390/s21041338 |
_version_ | 1783657852048506880 |
---|---|
author | Tylman, Wojciech Kotas, Rafał Kamiński, Marek Marciniak, Paweł Woźniak, Sebastian Napieralski, Jan Sakowicz, Bartosz Janc, Magdalena Józefowicz-Korczyńska, Magdalena Zamysłowska-Szmytke, Ewa |
author_facet | Tylman, Wojciech Kotas, Rafał Kamiński, Marek Marciniak, Paweł Woźniak, Sebastian Napieralski, Jan Sakowicz, Bartosz Janc, Magdalena Józefowicz-Korczyńska, Magdalena Zamysłowska-Szmytke, Ewa |
author_sort | Tylman, Wojciech |
collection | PubMed |
description | This paper presents a fall risk assessment approach based on a fast mobility test, automatically evaluated using a low-cost, scalable system for the recording and analysis of body movement. This mobility test has never before been investigated as a sole source of data for fall risk assessment. It can be performed in a very limited space and needs only minimal additional equipment, yet provides large amounts of information, as the presented system can obtain much more data than traditional observation by capturing minute details regarding body movement. The readings are provided wirelessly by one to seven low-cost micro-electro-mechanical inertial measurement units attached to the subject’s body segments. Combined with a body model, these allow segment rotations and translations to be computed and for body movements to be recreated in software. The subject can then be automatically classified by an artificial neural network based on selected values in the test, and those with an elevated risk of falls can be identified. Results obtained from a group of 40 subjects of various ages, both healthy volunteers and patients with vestibular system impairment, are presented to demonstrate the combined capabilities of the test and system. Labelling of subjects as fallers and non-fallers was performed using an objective and precise sensory organization test; it is an important novelty as this approach to subject labelling has never before been used in the design and evaluation of fall risk assessment systems. The findings show a true-positive ratio of 85% and true-negative ratio of 63% for classifying subjects as fallers or non-fallers using the introduced fast mobility test, which are noticeably better than those obtained for the long-established Timed Up and Go test. |
format | Online Article Text |
id | pubmed-7918104 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79181042021-03-02 Fully Automatic Fall Risk Assessment Based on a Fast Mobility Test Tylman, Wojciech Kotas, Rafał Kamiński, Marek Marciniak, Paweł Woźniak, Sebastian Napieralski, Jan Sakowicz, Bartosz Janc, Magdalena Józefowicz-Korczyńska, Magdalena Zamysłowska-Szmytke, Ewa Sensors (Basel) Article This paper presents a fall risk assessment approach based on a fast mobility test, automatically evaluated using a low-cost, scalable system for the recording and analysis of body movement. This mobility test has never before been investigated as a sole source of data for fall risk assessment. It can be performed in a very limited space and needs only minimal additional equipment, yet provides large amounts of information, as the presented system can obtain much more data than traditional observation by capturing minute details regarding body movement. The readings are provided wirelessly by one to seven low-cost micro-electro-mechanical inertial measurement units attached to the subject’s body segments. Combined with a body model, these allow segment rotations and translations to be computed and for body movements to be recreated in software. The subject can then be automatically classified by an artificial neural network based on selected values in the test, and those with an elevated risk of falls can be identified. Results obtained from a group of 40 subjects of various ages, both healthy volunteers and patients with vestibular system impairment, are presented to demonstrate the combined capabilities of the test and system. Labelling of subjects as fallers and non-fallers was performed using an objective and precise sensory organization test; it is an important novelty as this approach to subject labelling has never before been used in the design and evaluation of fall risk assessment systems. The findings show a true-positive ratio of 85% and true-negative ratio of 63% for classifying subjects as fallers or non-fallers using the introduced fast mobility test, which are noticeably better than those obtained for the long-established Timed Up and Go test. MDPI 2021-02-13 /pmc/articles/PMC7918104/ /pubmed/33668626 http://dx.doi.org/10.3390/s21041338 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tylman, Wojciech Kotas, Rafał Kamiński, Marek Marciniak, Paweł Woźniak, Sebastian Napieralski, Jan Sakowicz, Bartosz Janc, Magdalena Józefowicz-Korczyńska, Magdalena Zamysłowska-Szmytke, Ewa Fully Automatic Fall Risk Assessment Based on a Fast Mobility Test |
title | Fully Automatic Fall Risk Assessment Based on a Fast Mobility Test |
title_full | Fully Automatic Fall Risk Assessment Based on a Fast Mobility Test |
title_fullStr | Fully Automatic Fall Risk Assessment Based on a Fast Mobility Test |
title_full_unstemmed | Fully Automatic Fall Risk Assessment Based on a Fast Mobility Test |
title_short | Fully Automatic Fall Risk Assessment Based on a Fast Mobility Test |
title_sort | fully automatic fall risk assessment based on a fast mobility test |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918104/ https://www.ncbi.nlm.nih.gov/pubmed/33668626 http://dx.doi.org/10.3390/s21041338 |
work_keys_str_mv | AT tylmanwojciech fullyautomaticfallriskassessmentbasedonafastmobilitytest AT kotasrafał fullyautomaticfallriskassessmentbasedonafastmobilitytest AT kaminskimarek fullyautomaticfallriskassessmentbasedonafastmobilitytest AT marciniakpaweł fullyautomaticfallriskassessmentbasedonafastmobilitytest AT wozniaksebastian fullyautomaticfallriskassessmentbasedonafastmobilitytest AT napieralskijan fullyautomaticfallriskassessmentbasedonafastmobilitytest AT sakowiczbartosz fullyautomaticfallriskassessmentbasedonafastmobilitytest AT jancmagdalena fullyautomaticfallriskassessmentbasedonafastmobilitytest AT jozefowiczkorczynskamagdalena fullyautomaticfallriskassessmentbasedonafastmobilitytest AT zamysłowskaszmytkeewa fullyautomaticfallriskassessmentbasedonafastmobilitytest |