Cargando…
Deep Learning for Integrated Analysis of Insulin Resistance with Multi-Omics Data
Technological advances in next-generation sequencing (NGS) have made it possible to uncover extensive and dynamic alterations in diverse molecular components and biological pathways across healthy and diseased conditions. Large amounts of multi-omics data originating from emerging NGS experiments re...
Autores principales: | Huang, Eunchong, Kim, Sarah, Ahn, TaeJin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918166/ https://www.ncbi.nlm.nih.gov/pubmed/33671853 http://dx.doi.org/10.3390/jpm11020128 |
Ejemplares similares
-
Classification and Functional Analysis between Cancer and Normal Tissues Using Explainable Pathway Deep Learning through RNA-Sequencing Gene Expression
por: Park, Sangick, et al.
Publicado: (2021) -
Multimodal deep learning approaches for single-cell multi-omics data integration
por: Athaya, Tasbiraha, et al.
Publicado: (2023) -
Deep-Learning Algorithm and Concomitant Biomarker Identification for NSCLC Prediction Using Multi-Omics Data Integration
por: Park, Min-Koo, et al.
Publicado: (2022) -
CustOmics: A versatile deep-learning based strategy for multi-omics integration
por: Benkirane, Hakim, et al.
Publicado: (2023) -
Machine learning for multi-omics data integration in cancer
por: Cai, Zhaoxiang, et al.
Publicado: (2022)