Cargando…
Basalt Fibre Composite with Carbon Nanomodified Epoxy Matrix under Hydrothermal Ageing
This work aimed to investigate the effect of hybrid carbon nanofillers (e.g., carbon nanotubes/carbon nanofibers in the ratio 1:1 by mass) over the electrical and flexural properties for an epoxy matrix and corresponding basalt fibre reinforcing composite (BFRC) subjected to full-year seasonal water...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918171/ https://www.ncbi.nlm.nih.gov/pubmed/33670321 http://dx.doi.org/10.3390/polym13040532 |
_version_ | 1783657867246567424 |
---|---|
author | Glaskova-Kuzmina, Tatjana Zotti, Aldobenedetto Borriello, Anna Zarrelli, Mauro Aniskevich, Andrey |
author_facet | Glaskova-Kuzmina, Tatjana Zotti, Aldobenedetto Borriello, Anna Zarrelli, Mauro Aniskevich, Andrey |
author_sort | Glaskova-Kuzmina, Tatjana |
collection | PubMed |
description | This work aimed to investigate the effect of hybrid carbon nanofillers (e.g., carbon nanotubes/carbon nanofibers in the ratio 1:1 by mass) over the electrical and flexural properties for an epoxy matrix and corresponding basalt fibre reinforcing composite (BFRC) subjected to full-year seasonal water absorption. Hydrothermal ageing was performed by full immersion of the tested materials into distilled water according to the following model conditions (seasons). The mechanical properties were measured in three-point bending mode before environmental ageing and after each season. Upon environmental ageing, the relative change of flexural strength and elastic modulus of the epoxy and NC was within 10–15%. For nanomodified BFRCs, the slightly higher effect (approx. by 10%) of absorbed moisture on flexural characteristics was found and likely attributed to higher defectiveness (e.g., porosity, the formation of agglomerates etc.). During flexural tests, electrical resistance of the nanocomposites (NC) and BFRC/NC samples was evaluated. The electrical conductivity for UD BFRC/NC, before and after hydrothermal ageing, was by 2 and 3 times higher than for the NC, accordingly, revealing the orientation of electrically conductive nanoparticles and/or their agglomerates during lay-up manufacturing which was evaluated by the rules of the mixture. Based on all results obtained it can be concluded that the most potentially applicable for damage indication was UD BFRC/NC along fibres since full-year hydrothermal ageing improved its electrical conductivity by approx. 98% and, consequently, the ability to monitor damages was also enhanced. |
format | Online Article Text |
id | pubmed-7918171 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79181712021-03-02 Basalt Fibre Composite with Carbon Nanomodified Epoxy Matrix under Hydrothermal Ageing Glaskova-Kuzmina, Tatjana Zotti, Aldobenedetto Borriello, Anna Zarrelli, Mauro Aniskevich, Andrey Polymers (Basel) Article This work aimed to investigate the effect of hybrid carbon nanofillers (e.g., carbon nanotubes/carbon nanofibers in the ratio 1:1 by mass) over the electrical and flexural properties for an epoxy matrix and corresponding basalt fibre reinforcing composite (BFRC) subjected to full-year seasonal water absorption. Hydrothermal ageing was performed by full immersion of the tested materials into distilled water according to the following model conditions (seasons). The mechanical properties were measured in three-point bending mode before environmental ageing and after each season. Upon environmental ageing, the relative change of flexural strength and elastic modulus of the epoxy and NC was within 10–15%. For nanomodified BFRCs, the slightly higher effect (approx. by 10%) of absorbed moisture on flexural characteristics was found and likely attributed to higher defectiveness (e.g., porosity, the formation of agglomerates etc.). During flexural tests, electrical resistance of the nanocomposites (NC) and BFRC/NC samples was evaluated. The electrical conductivity for UD BFRC/NC, before and after hydrothermal ageing, was by 2 and 3 times higher than for the NC, accordingly, revealing the orientation of electrically conductive nanoparticles and/or their agglomerates during lay-up manufacturing which was evaluated by the rules of the mixture. Based on all results obtained it can be concluded that the most potentially applicable for damage indication was UD BFRC/NC along fibres since full-year hydrothermal ageing improved its electrical conductivity by approx. 98% and, consequently, the ability to monitor damages was also enhanced. MDPI 2021-02-11 /pmc/articles/PMC7918171/ /pubmed/33670321 http://dx.doi.org/10.3390/polym13040532 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Glaskova-Kuzmina, Tatjana Zotti, Aldobenedetto Borriello, Anna Zarrelli, Mauro Aniskevich, Andrey Basalt Fibre Composite with Carbon Nanomodified Epoxy Matrix under Hydrothermal Ageing |
title | Basalt Fibre Composite with Carbon Nanomodified Epoxy Matrix under Hydrothermal Ageing |
title_full | Basalt Fibre Composite with Carbon Nanomodified Epoxy Matrix under Hydrothermal Ageing |
title_fullStr | Basalt Fibre Composite with Carbon Nanomodified Epoxy Matrix under Hydrothermal Ageing |
title_full_unstemmed | Basalt Fibre Composite with Carbon Nanomodified Epoxy Matrix under Hydrothermal Ageing |
title_short | Basalt Fibre Composite with Carbon Nanomodified Epoxy Matrix under Hydrothermal Ageing |
title_sort | basalt fibre composite with carbon nanomodified epoxy matrix under hydrothermal ageing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918171/ https://www.ncbi.nlm.nih.gov/pubmed/33670321 http://dx.doi.org/10.3390/polym13040532 |
work_keys_str_mv | AT glaskovakuzminatatjana basaltfibrecompositewithcarbonnanomodifiedepoxymatrixunderhydrothermalageing AT zottialdobenedetto basaltfibrecompositewithcarbonnanomodifiedepoxymatrixunderhydrothermalageing AT borrielloanna basaltfibrecompositewithcarbonnanomodifiedepoxymatrixunderhydrothermalageing AT zarrellimauro basaltfibrecompositewithcarbonnanomodifiedepoxymatrixunderhydrothermalageing AT aniskevichandrey basaltfibrecompositewithcarbonnanomodifiedepoxymatrixunderhydrothermalageing |