Cargando…
Dropout Deep Belief Network Based Chinese Ancient Ceramic Non-Destructive Identification
A non-destructive identification method was developed here based on dropout deep belief network in multi-spectral data of ancient ceramic. A fractional differential algorithm was proposed to enhance the spectral details by making use of the difference between the first and second-order differential...
Autores principales: | Huang, Jizhong, Guan, Yepeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918262/ https://www.ncbi.nlm.nih.gov/pubmed/33673248 http://dx.doi.org/10.3390/s21041318 |
Ejemplares similares
-
Non-Destructive Sampling of Ancient Insect DNA
por: Thomsen, Philip Francis, et al.
Publicado: (2009) -
Dual Memory LSTM with Dual Attention Neural Network for Spatiotemporal Prediction
por: Li, Teng, et al.
Publicado: (2021) -
The ceramic sculptures of ancient Oaxaca
por: Boos, Frank, 1892-
Publicado: (1966) -
Implementation of Dropout Neuronal Units Based on Stochastic Memristive Devices in Neural Networks with High Classification Accuracy
por: Huang, He‐Ming, et al.
Publicado: (2020) -
Less Is More: Adaptive Trainable Gradient Dropout for Deep Neural Networks
por: Avgerinos, Christos, et al.
Publicado: (2023)