Cargando…

SICD: Novel Single-Access-Point Indoor Localization Based on CSI-MIMO with Dimensionality Reduction

With the rise of location-based services and the rapidly growing requirements related to their applications, indoor localization based on channel state information–multiple-input multiple-output (CSI-MIMO) has become an important research topic. However, indoor localization based on CSI-MIMO has som...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yunwei, Wang, Weigang, Xu, Chendong, Qin, Jie, Yu, Shujuan, Zhang, Yun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918435/
https://www.ncbi.nlm.nih.gov/pubmed/33668436
http://dx.doi.org/10.3390/s21041325
Descripción
Sumario:With the rise of location-based services and the rapidly growing requirements related to their applications, indoor localization based on channel state information–multiple-input multiple-output (CSI-MIMO) has become an important research topic. However, indoor localization based on CSI-MIMO has some disadvantages, including noise and high data dimensions. To overcome the above drawbacks, we proposed a novel method of indoor localization based on CSI-MIMO, named SICD. For SICD, a novel localization fingerprint was first designed which can reflect the time–frequency and space–frequency characteristics of CSI-MIMO under a single access point (AP). To reduce the redundancy in the data of CSI-MIMO amplitude, we developed a data dimensionality reduction algorithm. Moreover, by leveraging a log-normal distribution, we calculated the conditional probability of the naive Bayes classifier, which was used to predict the moving object’s location. Compared with other state-of-the-art methods, the results of the experiment confirm that the SICD effectively improves localization accuracy.