Cargando…
Inoculation of the Leishmania infantum HSP70-II Null Mutant Induces Long-Term Protection against L. amazonensis Infection in BALB/c Mice
Leishmania amazonensis parasites are etiological agents of cutaneous leishmaniasis in the New World. BALB/c mice are highly susceptible to L. amazonensis challenge due to their inability to mount parasite-dependent IFN-γ-mediated responses. Here, we analyzed the capacity of a single administration o...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918614/ https://www.ncbi.nlm.nih.gov/pubmed/33673117 http://dx.doi.org/10.3390/microorganisms9020363 |
Sumario: | Leishmania amazonensis parasites are etiological agents of cutaneous leishmaniasis in the New World. BALB/c mice are highly susceptible to L. amazonensis challenge due to their inability to mount parasite-dependent IFN-γ-mediated responses. Here, we analyzed the capacity of a single administration of the LiΔHSP70-II genetically-modified attenuated L. infantum line in preventing cutaneous leishmaniasis in mice challenged with L. amazonensis virulent parasites. In previous studies, this live attenuated vaccine has demonstrated to induce long-protection against murine leishmaniasis due to Old World Leishmania species. Vaccinated mice showed a reduction in the disease evolution due to L. amazonensis challenge, namely reduction in cutaneous lesions and parasite burdens. In contrast to control animals, after the challenge, protected mice showed anti-Leishmania IgG2a circulating antibodies accompanied to the induction of Leishmania-driven specific IFN-γ systemic response. An analysis performed in the lymph node draining the site of infection revealed an increase of the parasite-specific IFN-ϒ production by CD4(+) and CD8(+) T cells and a decrease in the secretion of IL-10 against leishmanial antigens. Since the immunity caused by the inoculation of this live vaccine generates protection against different forms of murine leishmaniasis, we postulate LiΔHSP70-II as a candidate for the development of human vaccines. |
---|