Cargando…
Impact of Different Epoxidation Approaches of Tall Oil Fatty Acids on Rigid Polyurethane Foam Thermal Insulation
A second-generation bio-based feedstock—tall oil fatty acids—was epoxidised via two pathways. Oxirane rings were introduced into the fatty acid carbon backbone using a heterogeneous epoxidation catalyst-ion exchange resin Amberlite IR-120 H or enzyme catalyst Candida antarctica lipase B under the tr...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918627/ https://www.ncbi.nlm.nih.gov/pubmed/33668608 http://dx.doi.org/10.3390/ma14040894 |
_version_ | 1783657966795227136 |
---|---|
author | Abolins, Arnis Pomilovskis, Ralfs Vanags, Edgars Mierina, Inese Michalowski, Slawomir Fridrihsone, Anda Kirpluks, Mikelis |
author_facet | Abolins, Arnis Pomilovskis, Ralfs Vanags, Edgars Mierina, Inese Michalowski, Slawomir Fridrihsone, Anda Kirpluks, Mikelis |
author_sort | Abolins, Arnis |
collection | PubMed |
description | A second-generation bio-based feedstock—tall oil fatty acids—was epoxidised via two pathways. Oxirane rings were introduced into the fatty acid carbon backbone using a heterogeneous epoxidation catalyst-ion exchange resin Amberlite IR-120 H or enzyme catalyst Candida antarctica lipase B under the trade name Novozym(®) 435. High functionality bio-polyols were synthesised from the obtained epoxidated tall oil fatty acids by oxirane ring-opening and subsequent esterification reactions with different polyfunctional alcohols: trimethylolpropane and triethanolamine. The synthesised epoxidised tall oil fatty acids (ETOFA) were studied by proton nuclear magnetic resonance. The chemical structure of obtained polyols was studied by Fourier-transform infrared spectroscopy and size exclusion chromatography. Average molecular weight and polydispersity of polyols were determined from size exclusion chromatography data. The obtained polyols were used to develop rigid polyurethane (PU) foam thermal insulation material with an approximate density of 40 kg/m(3). Thermal conductivity, apparent density and compression strength of the rigid PU foams were determined. The rigid PU foams obtained from polyols synthesised using Novozym(®) 435 catalyst had superior properties in comparison to rigid PU foams obtained from polyols synthesised using Amberlite IR-120 H. The developed rigid PU foams had an excellent thermal conductivity of 21.2–25.9 mW/(m·K). |
format | Online Article Text |
id | pubmed-7918627 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79186272021-03-02 Impact of Different Epoxidation Approaches of Tall Oil Fatty Acids on Rigid Polyurethane Foam Thermal Insulation Abolins, Arnis Pomilovskis, Ralfs Vanags, Edgars Mierina, Inese Michalowski, Slawomir Fridrihsone, Anda Kirpluks, Mikelis Materials (Basel) Article A second-generation bio-based feedstock—tall oil fatty acids—was epoxidised via two pathways. Oxirane rings were introduced into the fatty acid carbon backbone using a heterogeneous epoxidation catalyst-ion exchange resin Amberlite IR-120 H or enzyme catalyst Candida antarctica lipase B under the trade name Novozym(®) 435. High functionality bio-polyols were synthesised from the obtained epoxidated tall oil fatty acids by oxirane ring-opening and subsequent esterification reactions with different polyfunctional alcohols: trimethylolpropane and triethanolamine. The synthesised epoxidised tall oil fatty acids (ETOFA) were studied by proton nuclear magnetic resonance. The chemical structure of obtained polyols was studied by Fourier-transform infrared spectroscopy and size exclusion chromatography. Average molecular weight and polydispersity of polyols were determined from size exclusion chromatography data. The obtained polyols were used to develop rigid polyurethane (PU) foam thermal insulation material with an approximate density of 40 kg/m(3). Thermal conductivity, apparent density and compression strength of the rigid PU foams were determined. The rigid PU foams obtained from polyols synthesised using Novozym(®) 435 catalyst had superior properties in comparison to rigid PU foams obtained from polyols synthesised using Amberlite IR-120 H. The developed rigid PU foams had an excellent thermal conductivity of 21.2–25.9 mW/(m·K). MDPI 2021-02-13 /pmc/articles/PMC7918627/ /pubmed/33668608 http://dx.doi.org/10.3390/ma14040894 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Abolins, Arnis Pomilovskis, Ralfs Vanags, Edgars Mierina, Inese Michalowski, Slawomir Fridrihsone, Anda Kirpluks, Mikelis Impact of Different Epoxidation Approaches of Tall Oil Fatty Acids on Rigid Polyurethane Foam Thermal Insulation |
title | Impact of Different Epoxidation Approaches of Tall Oil Fatty Acids on Rigid Polyurethane Foam Thermal Insulation |
title_full | Impact of Different Epoxidation Approaches of Tall Oil Fatty Acids on Rigid Polyurethane Foam Thermal Insulation |
title_fullStr | Impact of Different Epoxidation Approaches of Tall Oil Fatty Acids on Rigid Polyurethane Foam Thermal Insulation |
title_full_unstemmed | Impact of Different Epoxidation Approaches of Tall Oil Fatty Acids on Rigid Polyurethane Foam Thermal Insulation |
title_short | Impact of Different Epoxidation Approaches of Tall Oil Fatty Acids on Rigid Polyurethane Foam Thermal Insulation |
title_sort | impact of different epoxidation approaches of tall oil fatty acids on rigid polyurethane foam thermal insulation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918627/ https://www.ncbi.nlm.nih.gov/pubmed/33668608 http://dx.doi.org/10.3390/ma14040894 |
work_keys_str_mv | AT abolinsarnis impactofdifferentepoxidationapproachesoftalloilfattyacidsonrigidpolyurethanefoamthermalinsulation AT pomilovskisralfs impactofdifferentepoxidationapproachesoftalloilfattyacidsonrigidpolyurethanefoamthermalinsulation AT vanagsedgars impactofdifferentepoxidationapproachesoftalloilfattyacidsonrigidpolyurethanefoamthermalinsulation AT mierinainese impactofdifferentepoxidationapproachesoftalloilfattyacidsonrigidpolyurethanefoamthermalinsulation AT michalowskislawomir impactofdifferentepoxidationapproachesoftalloilfattyacidsonrigidpolyurethanefoamthermalinsulation AT fridrihsoneanda impactofdifferentepoxidationapproachesoftalloilfattyacidsonrigidpolyurethanefoamthermalinsulation AT kirpluksmikelis impactofdifferentepoxidationapproachesoftalloilfattyacidsonrigidpolyurethanefoamthermalinsulation |