Cargando…
Computational Complexity Reduction of Neural Networks of Brain Tumor Image Segmentation by Introducing Fermi–Dirac Correction Functions
Nowadays, deep learning methods with high structural complexity and flexibility inevitably lean on the computational capability of the hardware. A platform with high-performance GPUs and large amounts of memory could support neural networks having large numbers of layers and kernels. However, naivel...
Autores principales: | Tai, Yen-Ling, Huang, Shin-Jhe, Chen, Chien-Chang, Lu, Henry Horng-Shing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918890/ https://www.ncbi.nlm.nih.gov/pubmed/33670368 http://dx.doi.org/10.3390/e23020223 |
Ejemplares similares
-
Fermi-Dirac equations
por: Delbourgo, Robert, et al.
Publicado: (1991) -
Feature-aware unsupervised lesion segmentation for brain tumor images using fast data density functional transform
por: Huang, Shin-Jhe, et al.
Publicado: (2023) -
Fermi-Dirac correlations in $Zo \to ppX$
por: Kucharczyk, M, et al.
Publicado: (2004) -
Fermi-Dirac correlations in $Z^{o} ->ppX$
por: Kucharczyk, M, et al.
Publicado: (2004) -
Fermi-Dirac correlations in $Z \to ppX$ events
por: Kucharczyk, M, et al.
Publicado: (2005)