Cargando…
Robustifying the Deployment of tinyML Models for Autonomous Mini-Vehicles
Standard-sized autonomous vehicles have rapidly improved thanks to the breakthroughs of deep learning. However, scaling autonomous driving to mini-vehicles poses several challenges due to their limited on-board storage and computing capabilities. Moreover, autonomous systems lack robustness when dep...
Autores principales: | de Prado, Miguel, Rusci, Manuele, Capotondi, Alessandro, Donze, Romain, Benini, Luca, Pazos, Nuria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918899/ https://www.ncbi.nlm.nih.gov/pubmed/33668645 http://dx.doi.org/10.3390/s21041339 |
Ejemplares similares
-
TinyML
por: Warden, Pete
Publicado: (2019) -
DDD TinyML: A TinyML-Based Driver Drowsiness Detection Model Using Deep Learning
por: Alajlan, Norah N., et al.
Publicado: (2023) -
Smart Buildings: Water Leakage Detection Using TinyML
por: Atanane, Othmane, et al.
Publicado: (2023) -
A TinyML Deep Learning Approach for Indoor Tracking of Assets †
por: Avellaneda, Diego, et al.
Publicado: (2023) -
TinyML-Sensor for Shelf Life Estimation of Fresh Date Fruits
por: Srinivasagan, Ramasamy, et al.
Publicado: (2023)