Cargando…

An In-Depth Assessment of the Electronic and Magnetic Properties of a Highly Ordered Hybrid Interface: The Case of Nickel Tetra-Phenyl-Porphyrins on Fe(001)–p(1 × 1)O

In this paper we focus on the structural, electronic, and magnetic properties of Ni tetra-phenyl-porphyrins (NiTPP) grown on top of Fe(001)–p(1 × 1)O. Ordered thin films of metal TPP molecules are potentially interesting for organic electronic and spintronic applications, especially when they are co...

Descripción completa

Detalles Bibliográficos
Autores principales: Albani, Guglielmo, Calloni, Alberto, Picone, Andrea, Brambilla, Alberto, Capra, Michele, Lodesani, Alessandro, Duò, Lamberto, Finazzi, Marco, Ciccacci, Franco, Bussetti, Gianlorenzo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918924/
https://www.ncbi.nlm.nih.gov/pubmed/33668500
http://dx.doi.org/10.3390/mi12020191
Descripción
Sumario:In this paper we focus on the structural, electronic, and magnetic properties of Ni tetra-phenyl-porphyrins (NiTPP) grown on top of Fe(001)–p(1 × 1)O. Ordered thin films of metal TPP molecules are potentially interesting for organic electronic and spintronic applications, especially when they are coupled to a ferromagnetic substrate. Unfortunately, porphyrin layers deposited on top of ferromagnetic substrates do not generally show long-range order. In this work, we provide evidence of an ordered disposition of the organic film above the iron surface and we prove that the thin layer of iron oxide decouples the molecules from the substrate, thus preserving the molecular electronic features, especially the HOMO-LUMO gap, even when just a few organic layers are deposited. The effect of the exposure to molecular oxygen is also investigated and an increased robustness against oxidation with respect to the bare substrate is detected. Finally, we present our results for the magnetic analysis performed by spin resolved spectroscopy, finding a null magnetic coupling between the molecules and the substrate.