Cargando…
Automatic Pharyngeal Phase Recognition in Untrimmed Videofluoroscopic Swallowing Study Using Transfer Learning with Deep Convolutional Neural Networks
Background: Video fluoroscopic swallowing study (VFSS) is considered as the gold standard diagnostic tool for evaluating dysphagia. However, it is time consuming and labor intensive for the clinician to manually search the recorded long video image frame by frame to identify the instantaneous swallo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918932/ https://www.ncbi.nlm.nih.gov/pubmed/33668528 http://dx.doi.org/10.3390/diagnostics11020300 |
_version_ | 1783658035272482816 |
---|---|
author | Lee, Ki-Sun Lee, Eunyoung Choi, Bareun Pyun, Sung-Bom |
author_facet | Lee, Ki-Sun Lee, Eunyoung Choi, Bareun Pyun, Sung-Bom |
author_sort | Lee, Ki-Sun |
collection | PubMed |
description | Background: Video fluoroscopic swallowing study (VFSS) is considered as the gold standard diagnostic tool for evaluating dysphagia. However, it is time consuming and labor intensive for the clinician to manually search the recorded long video image frame by frame to identify the instantaneous swallowing abnormality in VFSS images. Therefore, this study aims to present a deep leaning-based approach using transfer learning with a convolutional neural network (CNN) that automatically annotates pharyngeal phase frames in untrimmed VFSS videos such that frames need not be searched manually. Methods: To determine whether the image frame in the VFSS video is in the pharyngeal phase, a single-frame baseline architecture based the deep CNN framework is used and a transfer learning technique with fine-tuning is applied. Results: Compared with all experimental CNN models, that fine-tuned with two blocks of the VGG-16 (VGG16-FT5) model achieved the highest performance in terms of recognizing the frame of pharyngeal phase, that is, the accuracy of 93.20 (±1.25)%, sensitivity of 84.57 (±5.19)%, specificity of 94.36 (±1.21)%, AUC of 0.8947 (±0.0269) and Kappa of 0.7093 (±0.0488). Conclusions: Using appropriate and fine-tuning techniques and explainable deep learning techniques such as grad CAM, this study shows that the proposed single-frame-baseline-architecture-based deep CNN framework can yield high performances in the full automation of VFSS video analysis. |
format | Online Article Text |
id | pubmed-7918932 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79189322021-03-02 Automatic Pharyngeal Phase Recognition in Untrimmed Videofluoroscopic Swallowing Study Using Transfer Learning with Deep Convolutional Neural Networks Lee, Ki-Sun Lee, Eunyoung Choi, Bareun Pyun, Sung-Bom Diagnostics (Basel) Article Background: Video fluoroscopic swallowing study (VFSS) is considered as the gold standard diagnostic tool for evaluating dysphagia. However, it is time consuming and labor intensive for the clinician to manually search the recorded long video image frame by frame to identify the instantaneous swallowing abnormality in VFSS images. Therefore, this study aims to present a deep leaning-based approach using transfer learning with a convolutional neural network (CNN) that automatically annotates pharyngeal phase frames in untrimmed VFSS videos such that frames need not be searched manually. Methods: To determine whether the image frame in the VFSS video is in the pharyngeal phase, a single-frame baseline architecture based the deep CNN framework is used and a transfer learning technique with fine-tuning is applied. Results: Compared with all experimental CNN models, that fine-tuned with two blocks of the VGG-16 (VGG16-FT5) model achieved the highest performance in terms of recognizing the frame of pharyngeal phase, that is, the accuracy of 93.20 (±1.25)%, sensitivity of 84.57 (±5.19)%, specificity of 94.36 (±1.21)%, AUC of 0.8947 (±0.0269) and Kappa of 0.7093 (±0.0488). Conclusions: Using appropriate and fine-tuning techniques and explainable deep learning techniques such as grad CAM, this study shows that the proposed single-frame-baseline-architecture-based deep CNN framework can yield high performances in the full automation of VFSS video analysis. MDPI 2021-02-13 /pmc/articles/PMC7918932/ /pubmed/33668528 http://dx.doi.org/10.3390/diagnostics11020300 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lee, Ki-Sun Lee, Eunyoung Choi, Bareun Pyun, Sung-Bom Automatic Pharyngeal Phase Recognition in Untrimmed Videofluoroscopic Swallowing Study Using Transfer Learning with Deep Convolutional Neural Networks |
title | Automatic Pharyngeal Phase Recognition in Untrimmed Videofluoroscopic Swallowing Study Using Transfer Learning with Deep Convolutional Neural Networks |
title_full | Automatic Pharyngeal Phase Recognition in Untrimmed Videofluoroscopic Swallowing Study Using Transfer Learning with Deep Convolutional Neural Networks |
title_fullStr | Automatic Pharyngeal Phase Recognition in Untrimmed Videofluoroscopic Swallowing Study Using Transfer Learning with Deep Convolutional Neural Networks |
title_full_unstemmed | Automatic Pharyngeal Phase Recognition in Untrimmed Videofluoroscopic Swallowing Study Using Transfer Learning with Deep Convolutional Neural Networks |
title_short | Automatic Pharyngeal Phase Recognition in Untrimmed Videofluoroscopic Swallowing Study Using Transfer Learning with Deep Convolutional Neural Networks |
title_sort | automatic pharyngeal phase recognition in untrimmed videofluoroscopic swallowing study using transfer learning with deep convolutional neural networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918932/ https://www.ncbi.nlm.nih.gov/pubmed/33668528 http://dx.doi.org/10.3390/diagnostics11020300 |
work_keys_str_mv | AT leekisun automaticpharyngealphaserecognitioninuntrimmedvideofluoroscopicswallowingstudyusingtransferlearningwithdeepconvolutionalneuralnetworks AT leeeunyoung automaticpharyngealphaserecognitioninuntrimmedvideofluoroscopicswallowingstudyusingtransferlearningwithdeepconvolutionalneuralnetworks AT choibareun automaticpharyngealphaserecognitioninuntrimmedvideofluoroscopicswallowingstudyusingtransferlearningwithdeepconvolutionalneuralnetworks AT pyunsungbom automaticpharyngealphaserecognitioninuntrimmedvideofluoroscopicswallowingstudyusingtransferlearningwithdeepconvolutionalneuralnetworks |