Cargando…
Automatic Pharyngeal Phase Recognition in Untrimmed Videofluoroscopic Swallowing Study Using Transfer Learning with Deep Convolutional Neural Networks
Background: Video fluoroscopic swallowing study (VFSS) is considered as the gold standard diagnostic tool for evaluating dysphagia. However, it is time consuming and labor intensive for the clinician to manually search the recorded long video image frame by frame to identify the instantaneous swallo...
Autores principales: | Lee, Ki-Sun, Lee, Eunyoung, Choi, Bareun, Pyun, Sung-Bom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918932/ https://www.ncbi.nlm.nih.gov/pubmed/33668528 http://dx.doi.org/10.3390/diagnostics11020300 |
Ejemplares similares
-
Machine learning analysis to automatically measure response time of pharyngeal swallowing reflex in videofluoroscopic swallowing study
por: Lee, Jong Taek, et al.
Publicado: (2020) -
Automatic Detection of the Pharyngeal Phase in Raw Videos for the Videofluoroscopic Swallowing Study Using Efficient Data Collection and 3D Convolutional Networks †
por: Lee, Jong Taek, et al.
Publicado: (2019) -
Correlation between Location of Brain Lesion and Cognitive Function and Findings of Videofluoroscopic Swallowing Study
por: Moon, Hyun Im, et al.
Publicado: (2012) -
Videofluoroscopic and Manometric Evaluation of Pharyngeal and Upper Esophageal Sphincter Function During Swallowing
por: Yoon, Kyung Jae, et al.
Publicado: (2014) -
Adding Endoscopist-Directed Flexible Endoscopic Evaluation of Swallowing to the Videofluoroscopic Swallowing Study Increased the Detection Rates of Penetration, Aspiration, and Pharyngeal Residue
por: Park, Won Young, et al.
Publicado: (2015)