Cargando…
Histone Deacetylase Inhibitors and Microtubule Inhibitors Induce Apoptosis in Feline Luminal Mammary Carcinoma Cells
SIMPLE SUMMARY: Feline mammary tumors (FMT) are very common in cats, associated with very aggressive behavior and a short life expectancy. Surgery is the most used treatment but tumor recurrence is common. Currently, available therapies are insufficient, therefore, new molecular targets are needed t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918990/ https://www.ncbi.nlm.nih.gov/pubmed/33671894 http://dx.doi.org/10.3390/ani11020502 |
Sumario: | SIMPLE SUMMARY: Feline mammary tumors (FMT) are very common in cats, associated with very aggressive behavior and a short life expectancy. Surgery is the most used treatment but tumor recurrence is common. Currently, available therapies are insufficient, therefore, new molecular targets are needed to develop more efficient therapeutics. Histone deacetylases inhibitors (HDACis) have been developed to target tumor cells, by disrupting gene expression and leading to cell death. Microtubules inhibitors (MTIs) have also been a focus of research, to target polymerization of microtubules, and consequently disturbing the cytoskeleton and leading to cell cycle arrest and apoptosis. However, there are few studies on the use of HDACis and MTIs in cats. In this study, we addressed if these two drug classes could be used as new therapeutic options in FMTs. All HDACis and MTIs exhibited suitable and dose-dependent antitumor effects in FMT cell lines. Immunoblot analysis confirmed that the mode of action of HDACis is conserved in feline mammary tumor cell lines. Finally, flow cytometry showed that exposure with HDACis and MTIs lead to the induction of cellular apoptosis. In summary, HDACis and MTIs possess antitumor properties suggesting further studies on their use in the treatment of feline mammary tumors. ABSTRACT: Feline mammary carcinoma (FMC) is the third most common type of neoplasia in cats, sharing similar epidemiological features with human breast cancer. In humans, histone deacetylases (HDACs) play an important role in the regulation of gene expression, with HDAC inhibitors (HDACis) disrupting gene expression and leading to cell death. In parallel, microtubules inhibitors (MTIs) interfere with the polymerization of microtubules, leading to cell cycle arrest and apoptosis. Although HDACis and MTIs are used in human cancer patients, in cats, data is scarce. In this study, we evaluated the antitumor properties of six HDACis (CI-994, panobinostat, SAHA, SBHA, scriptaid, and trichostatin A) and four MTIs (colchicine, nocodazole, paclitaxel, and vinblastine) using three FMC cell lines (CAT-MT, FMCp, and FMCm), and compared with the human breast cancer cell line (SK-BR-3). HDACis and MTIs exhibited dose-dependent antitumor effects in FMC cell lines, and for all inhibitors, the IC50 values were determined, with one feline cell line showing reduced susceptibility (FMCm). Immunoblot analysis confirmed an increase in the acetylation status of core histone protein HDAC3 and flow cytometry showed that HDACis and MTIs lead to cellular apoptosis. Overall, our study uncovers HDACis and MTIs as promising anti-cancer agents to treat FMCs. |
---|