Cargando…

DVDeconv: An Open-Source MATLAB Toolbox for Depth-Variant Asymmetric Deconvolution of Fluorescence Micrographs

To investigate the cellular structure, biomedical researchers often obtain three-dimensional images by combining two-dimensional images taken along the z axis. However, these images are blurry in all directions due to diffraction limitations. This blur becomes more severe when focusing further insid...

Descripción completa

Detalles Bibliográficos
Autor principal: Kim, Boyoung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7919057/
https://www.ncbi.nlm.nih.gov/pubmed/33671933
http://dx.doi.org/10.3390/cells10020397
Descripción
Sumario:To investigate the cellular structure, biomedical researchers often obtain three-dimensional images by combining two-dimensional images taken along the z axis. However, these images are blurry in all directions due to diffraction limitations. This blur becomes more severe when focusing further inside the specimen as photons in deeper focus must traverse a longer distance within the specimen. This type of blur is called depth-variance. Moreover, due to lens imperfection, the blur has asymmetric shape. Most deconvolution solutions for removing blur assume depth-invariant or x-y symmetric blur, and presently, there is no open-source for depth-variant asymmetric deconvolution. In addition, existing datasets for deconvolution microscopy also assume invariant or x-y symmetric blur, which are insufficient to reflect actual imaging conditions. DVDeconv, that is a set of MATLAB functions with a user-friendly graphical interface, has been developed to address depth-variant asymmetric blur. DVDeconv includes dataset, depth-variant asymmetric point spread function generator, and deconvolution algorithms. Experimental results using DVDeconv reveal that depth-variant asymmetric deconvolution using DVDeconv removes blurs accurately. Furthermore, the dataset in DVDeconv constructed can be used to evaluate the performance of microscopy deconvolution to be developed in the future.