Cargando…
Nano-Interstice Driven Powerless Blood Plasma Extraction in a Membrane Filter Integrated Microfluidic Device
Blood plasma is a source of biomarkers in blood and a simple, fast, and easy extraction method is highly required for point-of-care testing (POCT) applications. This paper proposes a membrane filter integrated microfluidic device to extract blood plasma from whole blood, without any external instrum...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7919272/ https://www.ncbi.nlm.nih.gov/pubmed/33671983 http://dx.doi.org/10.3390/s21041366 |
Sumario: | Blood plasma is a source of biomarkers in blood and a simple, fast, and easy extraction method is highly required for point-of-care testing (POCT) applications. This paper proposes a membrane filter integrated microfluidic device to extract blood plasma from whole blood, without any external instrumentation. A commercially available membrane filter was integrated with a newly designed dual-cover microfluidic device to avoid leakage of the extracted plasma and remaining blood cells. Nano-interstices installed on both sides of the microfluidic channels actively draw the extracted plasma from the membrane. The developed device successfully supplied 20 μL of extracted plasma with a high extraction yield (~45%) in 16 min. |
---|