Cargando…
Research on Distance Transform and Neural Network Lidar Information Sampling Classification-Based Semantic Segmentation of 2D Indoor Room Maps
Semantic segmentation of room maps is an essential issue in mobile robots’ execution of tasks. In this work, a new approach to obtain the semantic labels of 2D lidar room maps by combining distance transform watershed-based pre-segmentation and a skillfully designed neural network lidar information...
Autores principales: | Zheng, Tao, Duan, Zhizhao, Wang, Jin, Lu, Guodong, Li, Shengjie, Yu, Zhiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7919285/ https://www.ncbi.nlm.nih.gov/pubmed/33671979 http://dx.doi.org/10.3390/s21041365 |
Ejemplares similares
-
Multi-LiDAR Mapping for Scene Segmentation in Indoor Environments for Mobile Robots
por: Gonzalez, Pavel, et al.
Publicado: (2022) -
Lidar–Camera Semi-Supervised Learning for Semantic Segmentation
por: Caltagirone, Luca, et al.
Publicado: (2021) -
Indoor and Outdoor Backpack Mapping with Calibrated Pair of Velodyne LiDARs
por: Velas, Martin, et al.
Publicado: (2019) -
FWNet: Semantic Segmentation for Full-Waveform LiDAR Data Using Deep Learning
por: Shinohara, Takayuki, et al.
Publicado: (2020) -
Multi-scale fusion for RGB-D indoor semantic segmentation
por: Jiang, Shiyi, et al.
Publicado: (2022)