Cargando…
Modified U-Net for liver cancer segmentation from computed tomography images with a new class balancing method
BACKGROUND: Liver cancer is the sixth most common cancer worldwide. It is mostly diagnosed with a computed tomography scan. Nowadays deep learning methods have been used for the segmentation of the liver and its tumor from the computed tomography (CT) scan images. This research mainly focused on seg...
Autores principales: | Ayalew, Yodit Abebe, Fante, Kinde Anlay, Mohammed, Mohammed Aliy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7919329/ https://www.ncbi.nlm.nih.gov/pubmed/33641679 http://dx.doi.org/10.1186/s42490-021-00050-y |
Ejemplares similares
-
Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models
por: Abdurahman, Fetulhak, et al.
Publicado: (2021) -
Single-cell conventional pap smear image classification using pre-trained deep neural network architectures
por: Mohammed, Mohammed Aliy, et al.
Publicado: (2021) -
Tile-based microscopic image processing for malaria screening using a deep learning approach
por: Shewajo, Fetulhak Abdurahman, et al.
Publicado: (2023) -
Validating Poly(3,4-ethylene dioxythiophene) Polystyrene Sulfonate-Based Textile Electroencephalography Electrodes by a Textile-Based Head Phantom
por: Tseghai, Granch Berhe, et al.
Publicado: (2021) -
A Long-Lasting Textile-Based Anatomically Realistic Head Phantom for Validation of EEG Electrodes
por: Tseghai, Granch Berhe, et al.
Publicado: (2021)