Cargando…
Sensitivity of the Natriuretic Peptide/cGMP System to Hyperammonaemia in Rat C6 Glioma Cells and GPNT Brain Endothelial Cells
C-type natriuretic peptide (CNP) is the major natriuretic peptide of the central nervous system and acts via its selective guanylyl cyclase-B (GC-B) receptor to regulate cGMP production in neurons, astrocytes and endothelial cells. CNP is implicated in the regulation of neurogenesis, axonal bifurcat...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7919485/ https://www.ncbi.nlm.nih.gov/pubmed/33672024 http://dx.doi.org/10.3390/cells10020398 |
_version_ | 1783658134722576384 |
---|---|
author | Regan, Jacob T. Mirczuk, Samantha M. Scudder, Christopher J. Stacey, Emily Khan, Sabah Worwood, Michael Powles, Torinn Dennis-Beron, J. Sebastian Ginley-Hidinger, Matthew McGonnell, Imelda M. Volk, Holger A. Strickland, Rhiannon Tivers, Michael S. Lawson, Charlotte Lipscomb, Victoria J. Fowkes, Robert C. |
author_facet | Regan, Jacob T. Mirczuk, Samantha M. Scudder, Christopher J. Stacey, Emily Khan, Sabah Worwood, Michael Powles, Torinn Dennis-Beron, J. Sebastian Ginley-Hidinger, Matthew McGonnell, Imelda M. Volk, Holger A. Strickland, Rhiannon Tivers, Michael S. Lawson, Charlotte Lipscomb, Victoria J. Fowkes, Robert C. |
author_sort | Regan, Jacob T. |
collection | PubMed |
description | C-type natriuretic peptide (CNP) is the major natriuretic peptide of the central nervous system and acts via its selective guanylyl cyclase-B (GC-B) receptor to regulate cGMP production in neurons, astrocytes and endothelial cells. CNP is implicated in the regulation of neurogenesis, axonal bifurcation, as well as learning and memory. Several neurological disorders result in toxic concentrations of ammonia (hyperammonaemia), which can adversely affect astrocyte function. However, the relationship between CNP and hyperammonaemia is poorly understood. Here, we examine the molecular and pharmacological control of CNP in rat C6 glioma cells and rat GPNT brain endothelial cells, under conditions of hyperammonaemia. Concentration-dependent inhibition of C6 glioma cell proliferation by hyperammonaemia was unaffected by CNP co-treatment. Furthermore, hyperammonaemia pre-treatment (for 1 h and 24 h) caused a significant inhibition in subsequent CNP-stimulated cGMP accumulation in both C6 and GPNT cells, whereas nitric-oxide-dependent cGMP accumulation was not affected. CNP-stimulated cGMP efflux from C6 glioma cells was significantly reduced under conditions of hyperammonaemia, potentially via a mechanism involving changed in phosphodiesterase expression. Hyperammonaemia-stimulated ROS production was unaffected by CNP but enhanced by a nitric oxide donor in C6 cells. Extracellular vesicle production from C6 cells was enhanced by hyperammonaemia, and these vesicles caused impaired CNP-stimulated cGMP signalling in GPNT cells. Collectively, these data demonstrate functional interaction between CNP signalling and hyperammonaemia in C6 glioma and GPNT cells, but the exact mechanisms remain to be established. |
format | Online Article Text |
id | pubmed-7919485 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79194852021-03-02 Sensitivity of the Natriuretic Peptide/cGMP System to Hyperammonaemia in Rat C6 Glioma Cells and GPNT Brain Endothelial Cells Regan, Jacob T. Mirczuk, Samantha M. Scudder, Christopher J. Stacey, Emily Khan, Sabah Worwood, Michael Powles, Torinn Dennis-Beron, J. Sebastian Ginley-Hidinger, Matthew McGonnell, Imelda M. Volk, Holger A. Strickland, Rhiannon Tivers, Michael S. Lawson, Charlotte Lipscomb, Victoria J. Fowkes, Robert C. Cells Article C-type natriuretic peptide (CNP) is the major natriuretic peptide of the central nervous system and acts via its selective guanylyl cyclase-B (GC-B) receptor to regulate cGMP production in neurons, astrocytes and endothelial cells. CNP is implicated in the regulation of neurogenesis, axonal bifurcation, as well as learning and memory. Several neurological disorders result in toxic concentrations of ammonia (hyperammonaemia), which can adversely affect astrocyte function. However, the relationship between CNP and hyperammonaemia is poorly understood. Here, we examine the molecular and pharmacological control of CNP in rat C6 glioma cells and rat GPNT brain endothelial cells, under conditions of hyperammonaemia. Concentration-dependent inhibition of C6 glioma cell proliferation by hyperammonaemia was unaffected by CNP co-treatment. Furthermore, hyperammonaemia pre-treatment (for 1 h and 24 h) caused a significant inhibition in subsequent CNP-stimulated cGMP accumulation in both C6 and GPNT cells, whereas nitric-oxide-dependent cGMP accumulation was not affected. CNP-stimulated cGMP efflux from C6 glioma cells was significantly reduced under conditions of hyperammonaemia, potentially via a mechanism involving changed in phosphodiesterase expression. Hyperammonaemia-stimulated ROS production was unaffected by CNP but enhanced by a nitric oxide donor in C6 cells. Extracellular vesicle production from C6 cells was enhanced by hyperammonaemia, and these vesicles caused impaired CNP-stimulated cGMP signalling in GPNT cells. Collectively, these data demonstrate functional interaction between CNP signalling and hyperammonaemia in C6 glioma and GPNT cells, but the exact mechanisms remain to be established. MDPI 2021-02-15 /pmc/articles/PMC7919485/ /pubmed/33672024 http://dx.doi.org/10.3390/cells10020398 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Regan, Jacob T. Mirczuk, Samantha M. Scudder, Christopher J. Stacey, Emily Khan, Sabah Worwood, Michael Powles, Torinn Dennis-Beron, J. Sebastian Ginley-Hidinger, Matthew McGonnell, Imelda M. Volk, Holger A. Strickland, Rhiannon Tivers, Michael S. Lawson, Charlotte Lipscomb, Victoria J. Fowkes, Robert C. Sensitivity of the Natriuretic Peptide/cGMP System to Hyperammonaemia in Rat C6 Glioma Cells and GPNT Brain Endothelial Cells |
title | Sensitivity of the Natriuretic Peptide/cGMP System to Hyperammonaemia in Rat C6 Glioma Cells and GPNT Brain Endothelial Cells |
title_full | Sensitivity of the Natriuretic Peptide/cGMP System to Hyperammonaemia in Rat C6 Glioma Cells and GPNT Brain Endothelial Cells |
title_fullStr | Sensitivity of the Natriuretic Peptide/cGMP System to Hyperammonaemia in Rat C6 Glioma Cells and GPNT Brain Endothelial Cells |
title_full_unstemmed | Sensitivity of the Natriuretic Peptide/cGMP System to Hyperammonaemia in Rat C6 Glioma Cells and GPNT Brain Endothelial Cells |
title_short | Sensitivity of the Natriuretic Peptide/cGMP System to Hyperammonaemia in Rat C6 Glioma Cells and GPNT Brain Endothelial Cells |
title_sort | sensitivity of the natriuretic peptide/cgmp system to hyperammonaemia in rat c6 glioma cells and gpnt brain endothelial cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7919485/ https://www.ncbi.nlm.nih.gov/pubmed/33672024 http://dx.doi.org/10.3390/cells10020398 |
work_keys_str_mv | AT reganjacobt sensitivityofthenatriureticpeptidecgmpsystemtohyperammonaemiainratc6gliomacellsandgpntbrainendothelialcells AT mirczuksamantham sensitivityofthenatriureticpeptidecgmpsystemtohyperammonaemiainratc6gliomacellsandgpntbrainendothelialcells AT scudderchristopherj sensitivityofthenatriureticpeptidecgmpsystemtohyperammonaemiainratc6gliomacellsandgpntbrainendothelialcells AT staceyemily sensitivityofthenatriureticpeptidecgmpsystemtohyperammonaemiainratc6gliomacellsandgpntbrainendothelialcells AT khansabah sensitivityofthenatriureticpeptidecgmpsystemtohyperammonaemiainratc6gliomacellsandgpntbrainendothelialcells AT worwoodmichael sensitivityofthenatriureticpeptidecgmpsystemtohyperammonaemiainratc6gliomacellsandgpntbrainendothelialcells AT powlestorinn sensitivityofthenatriureticpeptidecgmpsystemtohyperammonaemiainratc6gliomacellsandgpntbrainendothelialcells AT dennisberonjsebastian sensitivityofthenatriureticpeptidecgmpsystemtohyperammonaemiainratc6gliomacellsandgpntbrainendothelialcells AT ginleyhidingermatthew sensitivityofthenatriureticpeptidecgmpsystemtohyperammonaemiainratc6gliomacellsandgpntbrainendothelialcells AT mcgonnellimeldam sensitivityofthenatriureticpeptidecgmpsystemtohyperammonaemiainratc6gliomacellsandgpntbrainendothelialcells AT volkholgera sensitivityofthenatriureticpeptidecgmpsystemtohyperammonaemiainratc6gliomacellsandgpntbrainendothelialcells AT stricklandrhiannon sensitivityofthenatriureticpeptidecgmpsystemtohyperammonaemiainratc6gliomacellsandgpntbrainendothelialcells AT tiversmichaels sensitivityofthenatriureticpeptidecgmpsystemtohyperammonaemiainratc6gliomacellsandgpntbrainendothelialcells AT lawsoncharlotte sensitivityofthenatriureticpeptidecgmpsystemtohyperammonaemiainratc6gliomacellsandgpntbrainendothelialcells AT lipscombvictoriaj sensitivityofthenatriureticpeptidecgmpsystemtohyperammonaemiainratc6gliomacellsandgpntbrainendothelialcells AT fowkesrobertc sensitivityofthenatriureticpeptidecgmpsystemtohyperammonaemiainratc6gliomacellsandgpntbrainendothelialcells |