Cargando…
Effect of Paraffin and Silica Matrix Phase Change Materials on Properties of Portland Cement Mortars
In the search for methods to incorporate Phase Change Materials (PCM) into Portland cement mortar mixtures, PCM based on paraffins adhered to a silica-based matrix appear as a suitable option. However, paraffin particles have been observed to escape from the silica matrix when water is added. There...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7919500/ https://www.ncbi.nlm.nih.gov/pubmed/33672049 http://dx.doi.org/10.3390/ma14040921 |
Sumario: | In the search for methods to incorporate Phase Change Materials (PCM) into Portland cement mortar mixtures, PCM based on paraffins adhered to a silica-based matrix appear as a suitable option. However, paraffin particles have been observed to escape from the silica matrix when water is added. There are only limited data on how the use of such PCM affects the behaviour of mortars. To evaluate the effect of this PCM addition, Portland mortar mixtures were elaborated with 5%, 10% and 15% of PCM content, and using CEM 42.5 I R and CEM I 52.5 R cement types. Physical properties such as density, open porosity, air content and water absorption were analysed for fresh and dry samples. The results obtained show that the PCM-added mixtures require greater water and cement amounts than the standard mortar mixtures to achieve similar compressive strengths. Compared to non-PCM mixtures the PCM-added mortars present a density lowering of 37% for fresh mixtures and near 45% for dry state forms. A maximum compressive strength of 15.9 MPa was reached for 15% PCM mixtures, while values beyond 40 MPa were achieved for 5% PCM mixtures. Thus, the proposed study contributes to broad the available knowledge of PCM cement mortar mixtures behaviour and their mix design. |
---|