Cargando…

Enhanced Virulence of Aeromonas hydrophila Is Induced by Stress and Serial Passaging in Mice

SIMPLE SUMMARY: Aeromonas hydrophila, which is an opportunistic zoonotic bacterium, has the ability to infect animals with injuries involving the condition of the aquatic environments. Factors including poor sanitation and water quality, stress, overcrowding, and rough handling can make animals more...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Kyoo-Tae, Lee, Seung-Hun, Lee, Kyoung-Ki, Han, Jee Eun, Kwak, Dongmi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7919638/
https://www.ncbi.nlm.nih.gov/pubmed/33669173
http://dx.doi.org/10.3390/ani11020508
Descripción
Sumario:SIMPLE SUMMARY: Aeromonas hydrophila, which is an opportunistic zoonotic bacterium, has the ability to infect animals with injuries involving the condition of the aquatic environments. Factors including poor sanitation and water quality, stress, overcrowding, and rough handling can make animals more sensitive to infections and trigger outbreaks of A. hydrophila. A. hydrophila was previously isolated from an African black-footed penguin that died while in captivity at a zoo, following clinical signs of depression and anorexia, and in this study, we investigated the effect of stress and serial passaging in mice on A. hydrophila virulence. Serial passaging in mice enhanced the virulence of A. hydrophila, and A. hydrophila infection combined with administration of stress hormones or fasting increased mortality. ABSTRACT: Aeromonas hydrophila was isolated from an African black-footed penguin (Spheniscus demersus) that died while in zoo captivity. At necropsy, the virulence of A. hydrophila appeared to be enhanced by stress, so was assessed in the presence of in vitro and in vivo stressors and serial passaging in mice. Virulence genes from the isolate were amplified by PCR. In vitro assays were conducted to test the hemolytic activity, cytotoxicity, and effect of stress hormones on A. hydrophila virulence. In vivo assays were conducted to test the stress effect on mortality of A. hydrophila-infected mice and virulence in mice. Two virulence genes coding for hemolysin (ahh1) and aerolysin (aerA) were detected, and the cytotoxic potential of the isolate was demonstrated in baby hamster kidney and Vero cells. Some or all mice inoculated with A. hydrophila and exposed to stress hormones (epinephrine and norepinephrine) or low temperature died, while mice inoculated with A. hydrophila and exposed to fasting or agitation stressors or no stressors survived. We concluded that stress can be fatal in mice experimentally infected with A. hydrophila and that serial passaging in mice dramatically enhances the virulence of A. hydrophila.