Cargando…
Feature Subset Selection for Malware Detection in Smart IoT Platforms
Malicious software (“malware”) has become one of the serious cybersecurity issues in Android ecosystem. Given the fast evolution of Android malware releases, it is practically not feasible to manually detect malware apps in the Android ecosystem. As a result, machine learning has become a fledgling...
Autores principales: | Abawajy, Jemal, Darem, Abdulbasit, Alhashmi, Asma A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7919840/ https://www.ncbi.nlm.nih.gov/pubmed/33669191 http://dx.doi.org/10.3390/s21041374 |
Ejemplares similares
-
Obfuscated Memory Malware Detection in Resource-Constrained IoT Devices for Smart City Applications
por: Shafin, Sakib Shahriar, et al.
Publicado: (2023) -
Transfer Learning for Image-Based Malware Detection for IoT
por: Panda, Pratyush, et al.
Publicado: (2023) -
Adversarial Samples on Android Malware Detection Systems for IoT Systems
por: Liu, Xiaolei, et al.
Publicado: (2019) -
IoT malware: An attribute-based taxonomy, detection mechanisms and challenges
por: Victor, Princy, et al.
Publicado: (2023) -
Malware Detection in Internet of Things (IoT) Devices Using Deep Learning
por: Riaz, Sharjeel, et al.
Publicado: (2022)