Cargando…
Using Automated Machine Learning to Predict the Mortality of Patients With COVID-19: Prediction Model Development Study
BACKGROUND: During a pandemic, it is important for clinicians to stratify patients and decide who receives limited medical resources. Machine learning models have been proposed to accurately predict COVID-19 disease severity. Previous studies have typically tested only one machine learning algorithm...
Autores principales: | Ikemura, Kenji, Bellin, Eran, Yagi, Yukako, Billett, Henny, Saada, Mahmoud, Simone, Katelyn, Stahl, Lindsay, Szymanski, James, Goldstein, D Y, Reyes Gil, Morayma |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7919846/ https://www.ncbi.nlm.nih.gov/pubmed/33539308 http://dx.doi.org/10.2196/23458 |
Ejemplares similares
-
Diagnosing TMAs by automated red cell morphology analyses
por: Billett, Henny H., et al.
Publicado: (2023) -
Correlation of Coagulation Parameters With Clinical Outcomes During the Coronavirus-19 Surge in New York: Observational Cohort
por: Reyes Gil, Morayma, et al.
Publicado: (2021) -
Indeterminate serotonin release assays are associated with a high mortality rate
por: Jindal, Shawn, et al.
Publicado: (2022) -
Identifying Neutrophil Extracellular Traps (NETs) in Blood Samples Using Peripheral Smear Autoanalyzers
por: Fedorov, Kateryna, et al.
Publicado: (2023) -
The association of race and COVID-19 mortality
por: Golestaneh, Ladan, et al.
Publicado: (2020)