Cargando…
Design Optimization of Reconfigurable Liquid Crystal Patch Antenna
In various fields such as the 5G antenna system and satellite communication system, there is a growing demand to develop a smart antenna with a frequency selective or beamforming function within a limited space. While antennas utilizing mechanical, electronic, and material characteristics are being...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7920024/ https://www.ncbi.nlm.nih.gov/pubmed/33669293 http://dx.doi.org/10.3390/ma14040932 |
_version_ | 1783658214193102848 |
---|---|
author | Kim, Dowon Kim, Kitae Kim, Hogyeong Choi, Moonyoung Na, Jun-Hee |
author_facet | Kim, Dowon Kim, Kitae Kim, Hogyeong Choi, Moonyoung Na, Jun-Hee |
author_sort | Kim, Dowon |
collection | PubMed |
description | In various fields such as the 5G antenna system and satellite communication system, there is a growing demand to develop a smart antenna with a frequency selective or beamforming function within a limited space. While antennas utilizing mechanical, electronic, and material characteristics are being studied, a method of having tunable frequency characteristics by applying a liquid crystal material with dielectric anisotropy to a planar patch antenna is proposed. In resonance mode, the design method for using only the minimum amount of expensive liquid crystals is systematically arranged while maximizing the amount of change in the operating frequency of the antenna by considering the electric field distribution on the surface of the patch antenna. Furthermore, to increase the dielectric anisotropy of the liquid crystal, the liquid crystal must be aligned. Simultaneously, in cases where the cell gap of the liquid crystal exceeds 100 μm, the alignment force is weakened. While compensating for this shortcoming, securing the radiation characteristics of the antenna is proposed, and simulations are performed. |
format | Online Article Text |
id | pubmed-7920024 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79200242021-03-02 Design Optimization of Reconfigurable Liquid Crystal Patch Antenna Kim, Dowon Kim, Kitae Kim, Hogyeong Choi, Moonyoung Na, Jun-Hee Materials (Basel) Article In various fields such as the 5G antenna system and satellite communication system, there is a growing demand to develop a smart antenna with a frequency selective or beamforming function within a limited space. While antennas utilizing mechanical, electronic, and material characteristics are being studied, a method of having tunable frequency characteristics by applying a liquid crystal material with dielectric anisotropy to a planar patch antenna is proposed. In resonance mode, the design method for using only the minimum amount of expensive liquid crystals is systematically arranged while maximizing the amount of change in the operating frequency of the antenna by considering the electric field distribution on the surface of the patch antenna. Furthermore, to increase the dielectric anisotropy of the liquid crystal, the liquid crystal must be aligned. Simultaneously, in cases where the cell gap of the liquid crystal exceeds 100 μm, the alignment force is weakened. While compensating for this shortcoming, securing the radiation characteristics of the antenna is proposed, and simulations are performed. MDPI 2021-02-16 /pmc/articles/PMC7920024/ /pubmed/33669293 http://dx.doi.org/10.3390/ma14040932 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kim, Dowon Kim, Kitae Kim, Hogyeong Choi, Moonyoung Na, Jun-Hee Design Optimization of Reconfigurable Liquid Crystal Patch Antenna |
title | Design Optimization of Reconfigurable Liquid Crystal Patch Antenna |
title_full | Design Optimization of Reconfigurable Liquid Crystal Patch Antenna |
title_fullStr | Design Optimization of Reconfigurable Liquid Crystal Patch Antenna |
title_full_unstemmed | Design Optimization of Reconfigurable Liquid Crystal Patch Antenna |
title_short | Design Optimization of Reconfigurable Liquid Crystal Patch Antenna |
title_sort | design optimization of reconfigurable liquid crystal patch antenna |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7920024/ https://www.ncbi.nlm.nih.gov/pubmed/33669293 http://dx.doi.org/10.3390/ma14040932 |
work_keys_str_mv | AT kimdowon designoptimizationofreconfigurableliquidcrystalpatchantenna AT kimkitae designoptimizationofreconfigurableliquidcrystalpatchantenna AT kimhogyeong designoptimizationofreconfigurableliquidcrystalpatchantenna AT choimoonyoung designoptimizationofreconfigurableliquidcrystalpatchantenna AT najunhee designoptimizationofreconfigurableliquidcrystalpatchantenna |