Cargando…

Empirical Performance and Energy Consumption Evaluation of Container Solutions on Resource Constrained IoT Gateways

Containers virtually package a piece of software and share the host Operating System (OS) upon deployment. This makes them notably light weight and suitable for dynamic service deployment at the network edge and Internet of Things (IoT) devices for reduced latency and energy consumption. Data collec...

Descripción completa

Detalles Bibliográficos
Autores principales: Raza, Syed M., Jeong, Jaeyeop, Kim, Moonseong, Kang, Byungseok, Choo, Hyunseung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7920078/
https://www.ncbi.nlm.nih.gov/pubmed/33669314
http://dx.doi.org/10.3390/s21041378
Descripción
Sumario:Containers virtually package a piece of software and share the host Operating System (OS) upon deployment. This makes them notably light weight and suitable for dynamic service deployment at the network edge and Internet of Things (IoT) devices for reduced latency and energy consumption. Data collection, computation, and now intelligence is included in variety of IoT devices which have very tight latency and energy consumption conditions. Recent studies satisfy latency condition through containerized services deployment on IoT devices and gateways. They fail to account for the limited energy and computing resources of these devices which limit the scalability and concurrent services deployment. This paper aims to establish guidelines and identify critical factors for containerized services deployment on resource constrained IoT devices. For this purpose, two container orchestration tools (i.e., Docker Swarm and Kubernetes) are tested and compared on a baseline IoT gateways testbed. Experiments use Deep Learning driven data analytics and Intrusion Detection System services, and evaluate the time it takes to prepare and deploy a container (creation time), Central Processing Unit (CPU) utilization for concurrent containers deployment, memory usage under different traffic loads, and energy consumption. The results indicate that container creation time and memory usage are decisive factors for containerized micro service architecture.