Cargando…
The Adhesion of Plasma Nanocoatings Controls the Shear Properties of GF/Polyester Composite
High-performance fibre-reinforced polymer composites are important construction materials based not only on the specific properties of the reinforcing fibres and the flexible polymer matrix but also on the compatible properties of the composite interphase. First, oxygen-free (a-CSi:H) and oxygen-bin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7920309/ https://www.ncbi.nlm.nih.gov/pubmed/33669369 http://dx.doi.org/10.3390/polym13040593 |
_version_ | 1783658251435376640 |
---|---|
author | Plichta, Tomas Sirjovova, Veronika Zvonek, Milan Kalinka, Gerhard Cech, Vladimir |
author_facet | Plichta, Tomas Sirjovova, Veronika Zvonek, Milan Kalinka, Gerhard Cech, Vladimir |
author_sort | Plichta, Tomas |
collection | PubMed |
description | High-performance fibre-reinforced polymer composites are important construction materials based not only on the specific properties of the reinforcing fibres and the flexible polymer matrix but also on the compatible properties of the composite interphase. First, oxygen-free (a-CSi:H) and oxygen-binding (a-CSiO:H) plasma nanocoatings of different mechanical and tribological properties were deposited on planar silicon dioxide substrates that closely mimic E-glass. The nanoscratch test was used to characterize the nanocoating adhesion expressed in terms of critical normal load and work of adhesion. Next, the same nanocoatings were deposited on E-glass fibres, which were used as reinforcements in the polyester composite to affect its interphase properties. The shear properties of the polymer composite were characterized by macro- and micromechanical tests, namely a short beam shear test to determine the short-beam strength and a single fibre push-out test to determine the interfacial shear strength. The results of the polymer composites showed a strong correlation between the short-beam strength and the interfacial shear strength, proving that both tests are sensitive to changes in fibre-matrix adhesion due to different surface modifications of glass fibres (GF). Finally, a strong correlation between the shear properties of the GF/polyester composite and the adhesion of the plasma nanocoating expressed through the work of adhesion was demonstrated. Thus, increasing the work of adhesion of plasma nanocoatings from 0.8 to 1.5 mJ·m(−2) increased the short-beam strength from 23.1 to 45.2 MPa. The results confirmed that the work of adhesion is a more suitable parameter in characterising the level of nanocoating adhesion in comparison with the critical normal load. |
format | Online Article Text |
id | pubmed-7920309 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79203092021-03-02 The Adhesion of Plasma Nanocoatings Controls the Shear Properties of GF/Polyester Composite Plichta, Tomas Sirjovova, Veronika Zvonek, Milan Kalinka, Gerhard Cech, Vladimir Polymers (Basel) Article High-performance fibre-reinforced polymer composites are important construction materials based not only on the specific properties of the reinforcing fibres and the flexible polymer matrix but also on the compatible properties of the composite interphase. First, oxygen-free (a-CSi:H) and oxygen-binding (a-CSiO:H) plasma nanocoatings of different mechanical and tribological properties were deposited on planar silicon dioxide substrates that closely mimic E-glass. The nanoscratch test was used to characterize the nanocoating adhesion expressed in terms of critical normal load and work of adhesion. Next, the same nanocoatings were deposited on E-glass fibres, which were used as reinforcements in the polyester composite to affect its interphase properties. The shear properties of the polymer composite were characterized by macro- and micromechanical tests, namely a short beam shear test to determine the short-beam strength and a single fibre push-out test to determine the interfacial shear strength. The results of the polymer composites showed a strong correlation between the short-beam strength and the interfacial shear strength, proving that both tests are sensitive to changes in fibre-matrix adhesion due to different surface modifications of glass fibres (GF). Finally, a strong correlation between the shear properties of the GF/polyester composite and the adhesion of the plasma nanocoating expressed through the work of adhesion was demonstrated. Thus, increasing the work of adhesion of plasma nanocoatings from 0.8 to 1.5 mJ·m(−2) increased the short-beam strength from 23.1 to 45.2 MPa. The results confirmed that the work of adhesion is a more suitable parameter in characterising the level of nanocoating adhesion in comparison with the critical normal load. MDPI 2021-02-16 /pmc/articles/PMC7920309/ /pubmed/33669369 http://dx.doi.org/10.3390/polym13040593 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Plichta, Tomas Sirjovova, Veronika Zvonek, Milan Kalinka, Gerhard Cech, Vladimir The Adhesion of Plasma Nanocoatings Controls the Shear Properties of GF/Polyester Composite |
title | The Adhesion of Plasma Nanocoatings Controls the Shear Properties of GF/Polyester Composite |
title_full | The Adhesion of Plasma Nanocoatings Controls the Shear Properties of GF/Polyester Composite |
title_fullStr | The Adhesion of Plasma Nanocoatings Controls the Shear Properties of GF/Polyester Composite |
title_full_unstemmed | The Adhesion of Plasma Nanocoatings Controls the Shear Properties of GF/Polyester Composite |
title_short | The Adhesion of Plasma Nanocoatings Controls the Shear Properties of GF/Polyester Composite |
title_sort | adhesion of plasma nanocoatings controls the shear properties of gf/polyester composite |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7920309/ https://www.ncbi.nlm.nih.gov/pubmed/33669369 http://dx.doi.org/10.3390/polym13040593 |
work_keys_str_mv | AT plichtatomas theadhesionofplasmananocoatingscontrolstheshearpropertiesofgfpolyestercomposite AT sirjovovaveronika theadhesionofplasmananocoatingscontrolstheshearpropertiesofgfpolyestercomposite AT zvonekmilan theadhesionofplasmananocoatingscontrolstheshearpropertiesofgfpolyestercomposite AT kalinkagerhard theadhesionofplasmananocoatingscontrolstheshearpropertiesofgfpolyestercomposite AT cechvladimir theadhesionofplasmananocoatingscontrolstheshearpropertiesofgfpolyestercomposite AT plichtatomas adhesionofplasmananocoatingscontrolstheshearpropertiesofgfpolyestercomposite AT sirjovovaveronika adhesionofplasmananocoatingscontrolstheshearpropertiesofgfpolyestercomposite AT zvonekmilan adhesionofplasmananocoatingscontrolstheshearpropertiesofgfpolyestercomposite AT kalinkagerhard adhesionofplasmananocoatingscontrolstheshearpropertiesofgfpolyestercomposite AT cechvladimir adhesionofplasmananocoatingscontrolstheshearpropertiesofgfpolyestercomposite |