Cargando…
Sex-Dependent Effects of 7,8-Dihydroxyflavone on Metabolic Health Are Associated with Alterations in the Host Gut Microbiome
7,8-Dihydroxyflavone (DHF) is a naturally occurring flavonoid that has been reported to protect against a variety of pathologies. Chronic administration of DHF prevents high-fat diet (HFD)-induced obesity in female, but not male, mice. However, the mechanisms underlying this sexual dimorphism have n...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7920311/ https://www.ncbi.nlm.nih.gov/pubmed/33669347 http://dx.doi.org/10.3390/nu13020637 |
_version_ | 1783658251903041536 |
---|---|
author | Sharma, Priyanka Wu, Guojun Kumaraswamy, Deeptha Burchat, Natalie Ye, Hong Gong, Yongjia Zhao, Liping Lam, Yan Y. Sampath, Harini |
author_facet | Sharma, Priyanka Wu, Guojun Kumaraswamy, Deeptha Burchat, Natalie Ye, Hong Gong, Yongjia Zhao, Liping Lam, Yan Y. Sampath, Harini |
author_sort | Sharma, Priyanka |
collection | PubMed |
description | 7,8-Dihydroxyflavone (DHF) is a naturally occurring flavonoid that has been reported to protect against a variety of pathologies. Chronic administration of DHF prevents high-fat diet (HFD)-induced obesity in female, but not male, mice. However, the mechanisms underlying this sexual dimorphism have not been elucidated. We have discovered that oral DHF supplementation significantly attenuates fat mass, hepatic lipid accumulation, and adipose tissue inflammation in female mice. In contrast, male mice were not protected from adiposity, and had a paradoxical worsening of hepatic lipid accumulation and adipose tissue inflammation upon DHF supplementation. Consistent with these sexually dimorphic effects on body weight and metabolic health, 7,8-DHF induced early and stable remodeling of the female intestinal microbiome. DHF supplementation significantly increased gut microbial diversity, and suppressed potentially detrimental bacteria, particularly Desulfovibrionaceae, which are pro-inflammatory and positively associated with obesity and inflammation. Changes in the female gut microbiome preceded alterations in body weights, and in silico analyses indicated that these early microbial changes were highly predictive of subsequent weight gain in female mice. While some alterations in the intestinal microbiome were also observed in male DHF-supplemented mice, these changes were distinct from those in females and, importantly, were not predictive of subsequent body weight changes in male animals. The temporality of microbial changes preceding alterations in body weight in female mice suggests a role for the gut microbiome in mediating the sexually dimorphic effects of DHF on body weight. Given the significant clinical interest in this flavonoid across a wide range of pathologies, further elucidation of these sexually dimorphic effects will aid the development of effective clinical therapies. |
format | Online Article Text |
id | pubmed-7920311 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79203112021-03-02 Sex-Dependent Effects of 7,8-Dihydroxyflavone on Metabolic Health Are Associated with Alterations in the Host Gut Microbiome Sharma, Priyanka Wu, Guojun Kumaraswamy, Deeptha Burchat, Natalie Ye, Hong Gong, Yongjia Zhao, Liping Lam, Yan Y. Sampath, Harini Nutrients Article 7,8-Dihydroxyflavone (DHF) is a naturally occurring flavonoid that has been reported to protect against a variety of pathologies. Chronic administration of DHF prevents high-fat diet (HFD)-induced obesity in female, but not male, mice. However, the mechanisms underlying this sexual dimorphism have not been elucidated. We have discovered that oral DHF supplementation significantly attenuates fat mass, hepatic lipid accumulation, and adipose tissue inflammation in female mice. In contrast, male mice were not protected from adiposity, and had a paradoxical worsening of hepatic lipid accumulation and adipose tissue inflammation upon DHF supplementation. Consistent with these sexually dimorphic effects on body weight and metabolic health, 7,8-DHF induced early and stable remodeling of the female intestinal microbiome. DHF supplementation significantly increased gut microbial diversity, and suppressed potentially detrimental bacteria, particularly Desulfovibrionaceae, which are pro-inflammatory and positively associated with obesity and inflammation. Changes in the female gut microbiome preceded alterations in body weights, and in silico analyses indicated that these early microbial changes were highly predictive of subsequent weight gain in female mice. While some alterations in the intestinal microbiome were also observed in male DHF-supplemented mice, these changes were distinct from those in females and, importantly, were not predictive of subsequent body weight changes in male animals. The temporality of microbial changes preceding alterations in body weight in female mice suggests a role for the gut microbiome in mediating the sexually dimorphic effects of DHF on body weight. Given the significant clinical interest in this flavonoid across a wide range of pathologies, further elucidation of these sexually dimorphic effects will aid the development of effective clinical therapies. MDPI 2021-02-16 /pmc/articles/PMC7920311/ /pubmed/33669347 http://dx.doi.org/10.3390/nu13020637 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sharma, Priyanka Wu, Guojun Kumaraswamy, Deeptha Burchat, Natalie Ye, Hong Gong, Yongjia Zhao, Liping Lam, Yan Y. Sampath, Harini Sex-Dependent Effects of 7,8-Dihydroxyflavone on Metabolic Health Are Associated with Alterations in the Host Gut Microbiome |
title | Sex-Dependent Effects of 7,8-Dihydroxyflavone on Metabolic Health Are Associated with Alterations in the Host Gut Microbiome |
title_full | Sex-Dependent Effects of 7,8-Dihydroxyflavone on Metabolic Health Are Associated with Alterations in the Host Gut Microbiome |
title_fullStr | Sex-Dependent Effects of 7,8-Dihydroxyflavone on Metabolic Health Are Associated with Alterations in the Host Gut Microbiome |
title_full_unstemmed | Sex-Dependent Effects of 7,8-Dihydroxyflavone on Metabolic Health Are Associated with Alterations in the Host Gut Microbiome |
title_short | Sex-Dependent Effects of 7,8-Dihydroxyflavone on Metabolic Health Are Associated with Alterations in the Host Gut Microbiome |
title_sort | sex-dependent effects of 7,8-dihydroxyflavone on metabolic health are associated with alterations in the host gut microbiome |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7920311/ https://www.ncbi.nlm.nih.gov/pubmed/33669347 http://dx.doi.org/10.3390/nu13020637 |
work_keys_str_mv | AT sharmapriyanka sexdependenteffectsof78dihydroxyflavoneonmetabolichealthareassociatedwithalterationsinthehostgutmicrobiome AT wuguojun sexdependenteffectsof78dihydroxyflavoneonmetabolichealthareassociatedwithalterationsinthehostgutmicrobiome AT kumaraswamydeeptha sexdependenteffectsof78dihydroxyflavoneonmetabolichealthareassociatedwithalterationsinthehostgutmicrobiome AT burchatnatalie sexdependenteffectsof78dihydroxyflavoneonmetabolichealthareassociatedwithalterationsinthehostgutmicrobiome AT yehong sexdependenteffectsof78dihydroxyflavoneonmetabolichealthareassociatedwithalterationsinthehostgutmicrobiome AT gongyongjia sexdependenteffectsof78dihydroxyflavoneonmetabolichealthareassociatedwithalterationsinthehostgutmicrobiome AT zhaoliping sexdependenteffectsof78dihydroxyflavoneonmetabolichealthareassociatedwithalterationsinthehostgutmicrobiome AT lamyany sexdependenteffectsof78dihydroxyflavoneonmetabolichealthareassociatedwithalterationsinthehostgutmicrobiome AT sampathharini sexdependenteffectsof78dihydroxyflavoneonmetabolichealthareassociatedwithalterationsinthehostgutmicrobiome |