Cargando…
Personalized prediction of early childhood asthma persistence: A machine learning approach
Early childhood asthma diagnosis is common; however, many children diagnosed before age 5 experience symptom resolution and it remains difficult to identify individuals whose symptoms will persist. Our objective was to develop machine learning models to identify which individuals diagnosed with asth...
Autores principales: | Bose, Saurav, Kenyon, Chén C., Masino, Aaron J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7920380/ https://www.ncbi.nlm.nih.gov/pubmed/33647071 http://dx.doi.org/10.1371/journal.pone.0247784 |
Ejemplares similares
-
Development of childhood asthma prediction models using machine learning approaches
por: Kothalawala, Dilini M., et al.
Publicado: (2021) -
Persistent Asthma in Childhood
por: Söderhäll, Cilla, et al.
Publicado: (2022) -
Nasal Discharge Eosinophils in Childhood Asthma Patients as a Predictive Factor for Persistent Asthma
por: Murayama, Norihide, et al.
Publicado: (2018) -
Machine Learning for Predicting the Risk for Childhood Asthma Using Prenatal, Perinatal, Postnatal and Environmental Factors
por: Jeddi, Zineb, et al.
Publicado: (2021) -
Machine learning approach to single nucleotide polymorphism-based asthma prediction
por: Gaudillo, Joverlyn, et al.
Publicado: (2019)