Cargando…
Daily Forecasting of Regional Epidemics of Coronavirus Disease with Bayesian Uncertainty Quantification, United States
To increase situational awareness and support evidence-based policymaking, we formulated a mathematical model for coronavirus disease transmission within a regional population. This compartmental model accounts for quarantine, self-isolation, social distancing, a nonexponentially distributed incubat...
Autores principales: | Lin, Yen Ting, Neumann, Jacob, Miller, Ely F., Posner, Richard G., Mallela, Abhishek, Safta, Cosmin, Ray, Jaideep, Thakur, Gautam, Chinthavali, Supriya, Hlavacek, William S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Centers for Disease Control and Prevention
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7920670/ https://www.ncbi.nlm.nih.gov/pubmed/33622460 http://dx.doi.org/10.3201/eid2703.203364 |
Ejemplares similares
-
Forecasting Multi-Wave Epidemics Through Bayesian Inference
por: Blonigan, Patrick, et al.
Publicado: (2021) -
Characterization of partially observed epidemics through Bayesian inference: application to COVID-19
por: Safta, Cosmin, et al.
Publicado: (2020) -
Bayesian Inference of State-Level COVID-19 Basic Reproduction Numbers across the United States
por: Mallela, Abhishek, et al.
Publicado: (2022) -
Quantification of early nonpharmaceutical interventions aimed at slowing transmission of Coronavirus Disease 2019 in the Navajo Nation and surrounding states (Arizona, Colorado, New Mexico, and Utah)
por: Miller, Ely F., et al.
Publicado: (2023) -
Quantification of early nonpharmaceutical interventions aimed at slowing transmission of Coronavirus Disease 2019 in the Navajo Nation and surrounding states (Arizona, Colorado, New Mexico, and Utah)
por: Miller, Ely F., et al.
Publicado: (2023)