Cargando…
Technology Acceptance of a Machine Learning Algorithm Predicting Delirium in a Clinical Setting: a Mixed-Methods Study
Early identification of patients with life-threatening risks such as delirium is crucial in order to initiate preventive actions as quickly as possible. Despite intense research on machine learning for the prediction of clinical outcomes, the acceptance of the integration of such complex models in c...
Autores principales: | Jauk, Stefanie, Kramer, Diether, Avian, Alexander, Berghold, Andrea, Leodolter, Werner, Schulz, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921052/ https://www.ncbi.nlm.nih.gov/pubmed/33646459 http://dx.doi.org/10.1007/s10916-021-01727-6 |
Ejemplares similares
-
Suicide Risk Assessment Using Machine Learning and Social Networks: a Scoping Review
por: Castillo-Sánchez, Gema, et al.
Publicado: (2020) -
Role of biological Data Mining and Machine Learning Techniques in Detecting and Diagnosing the Novel Coronavirus (COVID-19): A Systematic Review
por: Albahri, A. S., et al.
Publicado: (2020) -
Deep Learning-Based Natural Language Processing in Radiology: The Impact of Report Complexity, Disease Prevalence, Dataset Size, and Algorithm Type on Model Performance
por: Olthof, A. W., et al.
Publicado: (2021) -
Implementation and Evaluation of a RFID Smart Cabinet to Improve
Traceability and the Efficient Consumption of High Cost Medical Supplies in a Large
Hospital
por: del Carmen León-Araujo, María, et al.
Publicado: (2019) -
Graph-Representation of Patient Data: a Systematic Literature Review
por: Schrodt, Jens, et al.
Publicado: (2020)