Cargando…
Trading Locality for Time: Certifiable Randomness from Low-Depth Circuits
The generation of certifiable randomness is the most fundamental information-theoretic task that meaningfully separates quantum devices from their classical counterparts. We propose a protocol for exponential certified randomness expansion using a single quantum device. The protocol calls for the de...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921098/ https://www.ncbi.nlm.nih.gov/pubmed/33746232 http://dx.doi.org/10.1007/s00220-021-03963-w |
_version_ | 1783658407202390016 |
---|---|
author | Coudron, Matthew Stark, Jalex Vidick, Thomas |
author_facet | Coudron, Matthew Stark, Jalex Vidick, Thomas |
author_sort | Coudron, Matthew |
collection | PubMed |
description | The generation of certifiable randomness is the most fundamental information-theoretic task that meaningfully separates quantum devices from their classical counterparts. We propose a protocol for exponential certified randomness expansion using a single quantum device. The protocol calls for the device to implement a simple quantum circuit of constant depth on a 2D lattice of qubits. The output of the circuit can be verified classically in linear time, and is guaranteed to contain a polynomial number of certified random bits assuming that the device used to generate the output operated using a (classical or quantum) circuit of sub-logarithmic depth. This assumption contrasts with the locality assumption used for randomness certification based on Bell inequality violation and more recent proposals for randomness certification based on computational assumptions. Furthermore, to demonstrate randomness generation it is sufficient for a device to sample from the ideal output distribution within constant statistical distance. Our procedure is inspired by recent work of Bravyi et al. (Science 362(6412):308–311, 2018), who introduced a relational problem that can be solved by a constant-depth quantum circuit, but provably cannot be solved by any classical circuit of sub-logarithmic depth. We develop the discovery of Bravyi et al. into a framework for robust randomness expansion. Our results lead to a new proposal for a demonstrated quantum advantage that has some advantages compared to existing proposals. First, our proposal does not rest on any complexity-theoretic conjectures, but relies on the physical assumption that the adversarial device being tested implements a circuit of sub-logarithmic depth. Second, success on our task can be easily verified in classical linear time. Finally, our task is more noise-tolerant than most other existing proposals that can only tolerate multiplicative error, or require additional conjectures from complexity theory; in contrast, we are able to allow a small constant additive error in total variation distance between the sampled and ideal distributions. |
format | Online Article Text |
id | pubmed-7921098 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-79210982021-03-19 Trading Locality for Time: Certifiable Randomness from Low-Depth Circuits Coudron, Matthew Stark, Jalex Vidick, Thomas Commun Math Phys Article The generation of certifiable randomness is the most fundamental information-theoretic task that meaningfully separates quantum devices from their classical counterparts. We propose a protocol for exponential certified randomness expansion using a single quantum device. The protocol calls for the device to implement a simple quantum circuit of constant depth on a 2D lattice of qubits. The output of the circuit can be verified classically in linear time, and is guaranteed to contain a polynomial number of certified random bits assuming that the device used to generate the output operated using a (classical or quantum) circuit of sub-logarithmic depth. This assumption contrasts with the locality assumption used for randomness certification based on Bell inequality violation and more recent proposals for randomness certification based on computational assumptions. Furthermore, to demonstrate randomness generation it is sufficient for a device to sample from the ideal output distribution within constant statistical distance. Our procedure is inspired by recent work of Bravyi et al. (Science 362(6412):308–311, 2018), who introduced a relational problem that can be solved by a constant-depth quantum circuit, but provably cannot be solved by any classical circuit of sub-logarithmic depth. We develop the discovery of Bravyi et al. into a framework for robust randomness expansion. Our results lead to a new proposal for a demonstrated quantum advantage that has some advantages compared to existing proposals. First, our proposal does not rest on any complexity-theoretic conjectures, but relies on the physical assumption that the adversarial device being tested implements a circuit of sub-logarithmic depth. Second, success on our task can be easily verified in classical linear time. Finally, our task is more noise-tolerant than most other existing proposals that can only tolerate multiplicative error, or require additional conjectures from complexity theory; in contrast, we are able to allow a small constant additive error in total variation distance between the sampled and ideal distributions. Springer Berlin Heidelberg 2021-02-09 2021 /pmc/articles/PMC7921098/ /pubmed/33746232 http://dx.doi.org/10.1007/s00220-021-03963-w Text en © The Author(s) 2021 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Coudron, Matthew Stark, Jalex Vidick, Thomas Trading Locality for Time: Certifiable Randomness from Low-Depth Circuits |
title | Trading Locality for Time: Certifiable Randomness from Low-Depth Circuits |
title_full | Trading Locality for Time: Certifiable Randomness from Low-Depth Circuits |
title_fullStr | Trading Locality for Time: Certifiable Randomness from Low-Depth Circuits |
title_full_unstemmed | Trading Locality for Time: Certifiable Randomness from Low-Depth Circuits |
title_short | Trading Locality for Time: Certifiable Randomness from Low-Depth Circuits |
title_sort | trading locality for time: certifiable randomness from low-depth circuits |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921098/ https://www.ncbi.nlm.nih.gov/pubmed/33746232 http://dx.doi.org/10.1007/s00220-021-03963-w |
work_keys_str_mv | AT coudronmatthew tradinglocalityfortimecertifiablerandomnessfromlowdepthcircuits AT starkjalex tradinglocalityfortimecertifiablerandomnessfromlowdepthcircuits AT vidickthomas tradinglocalityfortimecertifiablerandomnessfromlowdepthcircuits |