Cargando…

Current Use of Total Body Irradiation in Haploidentical Allogeneic Hematopoietic Stem Cell Transplantation

Total body irradiation (TBI) is included in the conditioning regimen for allogeneic hematopoietic stem cell transplantation (HSCT), with unique advantages such as uniform distribution over the whole body and decreased exposure to cytotoxic chemotherapeutic agents. For individuals who lack matched si...

Descripción completa

Detalles Bibliográficos
Autores principales: Jung, Jongheon, Lee, Hyewon, Suh, Yang-Gun, Eom, Hyeon-Seok, Lee, Eunyoung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Academy of Medical Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921367/
https://www.ncbi.nlm.nih.gov/pubmed/33650334
http://dx.doi.org/10.3346/jkms.2021.36.e55
Descripción
Sumario:Total body irradiation (TBI) is included in the conditioning regimen for allogeneic hematopoietic stem cell transplantation (HSCT), with unique advantages such as uniform distribution over the whole body and decreased exposure to cytotoxic chemotherapeutic agents. For individuals who lack matched sibling or matched unrelated donors, the use of haploidentical donors has been increasing despite challenges such as graft rejection and graft-versus-host disease (GVHD). Although a limited number of studies have been performed to assess the clinical role of TBI in haploidentical HSCT, TBI-based conditioning showed comparable results in terms of survival outcomes, rate of relapse, and GVHD in diverse hematologic malignancies such as leukemia, lymphoma, and multiple myeloma. Advances in supportive care, along with recent technical improvements such as restriction of maximum tolerated dose, appropriate fractionation, and organ shielding, help to overcome diverse adverse events related to TBI. Post-transplantation cyclophosphamide was used in most studies to reduce the risk of GVHD. Additionally, it was found that post-transplantation rituximab may improve outcomes in TBI-based haploidentical HSCT, especially in patients with B-cell lymphoma. Along with the advances of techniques and strategies, the expansion of age restriction would be another important issue for TBI-based haploidentical HSCT considering the current tendency toward increasing age limitation and lack of matched donors. This review article summarizes the current use and future perspectives of TBI in haploidentical HSCT.