Cargando…

Alternative splicing events implicated in carcinogenesis and prognosis of thyroid gland cancer

Alternative splicing (AS), a critical post-transcriptional regulatory mechanism, expands gene expression patterns, thereby leading to increased protein diversity. Indeed, more than 95% of human genes undergo alternative splicing events (ASEs). In this study, we drew an all-around AS profile of thyro...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Zeng-Hong, Tang, Yun, Zhou, Yue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921437/
https://www.ncbi.nlm.nih.gov/pubmed/33649373
http://dx.doi.org/10.1038/s41598-021-84403-6
Descripción
Sumario:Alternative splicing (AS), a critical post-transcriptional regulatory mechanism, expands gene expression patterns, thereby leading to increased protein diversity. Indeed, more than 95% of human genes undergo alternative splicing events (ASEs). In this study, we drew an all-around AS profile of thyroid cancer cells based on RNA-seq data. In total, there were 45,150 AS in 10,446 thyroid cancer cell genes derived from 506 patients, suggesting that ASEs is a common process in TC. Moreover, 1819 AS signatures were found to be significantly associated with the overall survival (OS) of TC patients. Kaplan–Meier survival analyses suggested that seven types of ASEs were associated with poor prognosis of TC (P < 0.05). Among them, exon skipping (ES) was the most common, with alternate promoter (AP) and alternate terminator (AT) coming second and third, respectively. Our results indicated that acceptor sites (AA) (AUC: 0.937), alternate donor sites (AD) (AUC: 0.965), AT (AUC: 0.964), ES (AUC: 0.999), mutually exclusive exons (ME) (AUC: 0.999), and retained intron (RI) (AUC: 0.837) exhibited an AUC greater than 0.6. In addition, age and risk score (All) were risk factors for TC patients. We also evaluated whether TC-ASEs are regulated by various splicing factors (SFs). We found that the expression of 90 SFs was associated with 469 ASEs and OS of TC patients. Our findings provide an insight into the role of spliceosomes in TC, which may offer novel perspectives in tumor research.