Cargando…
API Driven On-Demand Participant ID Pseudonymization in Heterogeneous Multi-Study Research
OBJECTIVES: To facilitate clinical and translational research, imaging and non-imaging clinical data from multiple disparate systems must be aggregated for analysis. Study participant records from various sources are linked together and to patient records when possible to address research questions...
Autores principales: | Syed, Shorabuddin, Syed, Mahanazuddin, Syeda, Hafsa Bareen, Garza, Maryam, Bennett, William, Bona, Jonathan, Begum, Salma, Baghal, Ahmad, Zozus, Meredith, Prior, Fred |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Medical Informatics
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921568/ https://www.ncbi.nlm.nih.gov/pubmed/33611875 http://dx.doi.org/10.4258/hir.2021.27.1.39 |
Ejemplares similares
-
Toolkit to Compute Time-Based Elixhauser Comorbidity Indices and Extension to Common Data Models
por: Syed, Shorabuddin, et al.
Publicado: (2020) -
Consolidated EHR Workflow for Endoscopy Quality Reporting
por: SYED, Shorabuddin, et al.
Publicado: (2021) -
Machine Learning Approach to Optimize Sedation Use in Endoscopic Procedures
por: SYED, Shorabuddin, et al.
Publicado: (2021) -
Role of Machine Learning Techniques to Tackle the COVID-19 Crisis: Systematic Review
por: Syeda, Hafsa Bareen, et al.
Publicado: (2021) -
DeIDNER Corpus: Annotation of Clinical Discharge Summary Notes for Named Entity Recognition Using BRAT Tool
por: SYED, Mahanazuddin, et al.
Publicado: (2021)