Cargando…
Effectiveness of Transfer Learning for Deep Learning-Based Electrocardiogram Analysis
OBJECTIVES: Many deep learning-based predictive models evaluate the waveforms of electrocardiograms (ECGs). Because deep learning-based models are data-driven, large and labeled biosignal datasets are required. Most individual researchers find it difficult to collect adequate training data. We sugge...
Autores principales: | Jang, Jong-Hwan, Kim, Tae Young, Yoon, Dukyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Medical Informatics
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921576/ https://www.ncbi.nlm.nih.gov/pubmed/33611873 http://dx.doi.org/10.4258/hir.2021.27.1.19 |
Ejemplares similares
-
Deep Learning-Based Electrocardiogram Signal Noise Detection and Screening Model
por: Yoon, Dukyong, et al.
Publicado: (2019) -
Unsupervised feature learning for electrocardiogram data using the convolutional variational autoencoder
por: Jang, Jong-Hwan, et al.
Publicado: (2021) -
Deep Learning Approach for Imputation of Missing Values in Actigraphy Data: Algorithm Development Study
por: Jang, Jong-Hwan, et al.
Publicado: (2020) -
Construction of an Electrocardiogram Database Including 12 Lead Waveforms
por: Chung, Dahee, et al.
Publicado: (2018) -
Electrocardiogram-based deep learning algorithm for the screening of obstructive coronary artery disease
por: Choi, Seong Huan, et al.
Publicado: (2023)