Cargando…
Unsupervised content-preserving transformation for optical microscopy
The development of deep learning and open access to a substantial collection of imaging data together provide a potential solution for computational image transformation, which is gradually changing the landscape of optical imaging and biomedical research. However, current implementations of deep le...
Autores principales: | Li, Xinyang, Zhang, Guoxun, Qiao, Hui, Bao, Feng, Deng, Yue, Wu, Jiamin, He, Yangfan, Yun, Jingping, Lin, Xing, Xie, Hao, Wang, Haoqian, Dai, Qionghai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921581/ https://www.ncbi.nlm.nih.gov/pubmed/33649308 http://dx.doi.org/10.1038/s41377-021-00484-y |
Ejemplares similares
-
Photonic unsupervised learning variational autoencoder for high-throughput and low-latency image transmission
por: Chen, Yitong, et al.
Publicado: (2023) -
Snapshot Hyperspectral Volumetric Microscopy
por: Wu, Jiamin, et al.
Publicado: (2016) -
Computational optical sectioning with an incoherent multiscale scattering model for light-field microscopy
por: Zhang, Yi, et al.
Publicado: (2021) -
Rapid detection of neurons in widefield calcium imaging datasets after training with synthetic data
por: Zhang, Yuanlong, et al.
Publicado: (2023) -
Real-time denoising enables high-sensitivity fluorescence time-lapse imaging beyond the shot-noise limit
por: Li, Xinyang, et al.
Publicado: (2022)