Cargando…
Automatic Segmentation of Clinical Target Volumes for Post-Modified Radical Mastectomy Radiotherapy Using Convolutional Neural Networks
BACKGROUND: This study aims to construct and validate a model based on convolutional neural networks (CNNs), which can fulfil the automatic segmentation of clinical target volumes (CTVs) of breast cancer for radiotherapy. METHODS: In this work, computed tomography (CT) scans of 110 patients who unde...
Autores principales: | Liu, Zhikai, Liu, Fangjie, Chen, Wanqi, Liu, Xia, Hou, Xiaorong, Shen, Jing, Guan, Hui, Zhen, Hongnan, Wang, Shaobin, Chen, Qi, Chen, Yu, Zhang, Fuquan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921705/ https://www.ncbi.nlm.nih.gov/pubmed/33665160 http://dx.doi.org/10.3389/fonc.2020.581347 |
Ejemplares similares
-
Automatic Segmentation of Clinical Target Volume and Organs-at-Risk for Breast Conservative Radiotherapy Using a Convolutional Neural Network
por: Liu, Zhikai, et al.
Publicado: (2021) -
A blind randomized validated convolutional neural network for auto‐segmentation of clinical target volume in rectal cancer patients receiving neoadjuvant radiotherapy
por: Wu, Yijun, et al.
Publicado: (2021) -
Clinical Validation and Treatment Plan Evaluation Based on Autodelineation of the Clinical Target Volume for Prostate Cancer Radiotherapy
por: Shen, Jing, et al.
Publicado: (2023) -
The Impact of Different Simulation Modalities on Target Volume Delineation in Breast-Conserving Radiotherapy
por: Jin, Meng, et al.
Publicado: (2021) -
Clinical target volume automatic segmentation based on lymph node stations for lung cancer with bulky lump lymph nodes
por: Shen, Jie, et al.
Publicado: (2022)