Cargando…
Design and Analysis of a Novel Flexure-Based Dynamically Tunable Nanopositioner
Various tools, such as biomedical manipulators, optical aligners, and ultraprecision manufacturing tools, implement nanopositioners that must be dynamically tunable to satisfy the requirements of different working conditions. In this paper, we present the design and analysis of a flexure-based nanop...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921981/ https://www.ncbi.nlm.nih.gov/pubmed/33669608 http://dx.doi.org/10.3390/mi12020212 |
_version_ | 1783658583974477824 |
---|---|
author | Li, Zeying Liu, Pengbo Yan, Peng |
author_facet | Li, Zeying Liu, Pengbo Yan, Peng |
author_sort | Li, Zeying |
collection | PubMed |
description | Various tools, such as biomedical manipulators, optical aligners, and ultraprecision manufacturing tools, implement nanopositioners that must be dynamically tunable to satisfy the requirements of different working conditions. In this paper, we present the design and analysis of a flexure-based nanopositioner with dynamically tunable characteristics for the implementation of a high-performance servomechanism. The nanopositioner is composed of four flexure beams that are positioned in parallel and symmetric configurations sandwiched between magnetorheological elastomers (MREs). The properties of MREs impart dynamicity to the nanopositioner, allowing the workspace, stiffness, and damping characteristics in particular to be tuned under the action of an external magnetic field. By utilizing elastic beam theory and electromagnetic field coupling analysis, kinetostatic and dynamic models of the proposed nanopositioner were established to predict the variable stiffness property and dynamically tunable characteristics. The models were validated by performing a finite element analysis. Herein, it is shown that the proposed nanopositioner model can actively adjust the trade-offs between the working range, speed, and sustained load capability by changing the magnetic field. The proposed dynamic tuning method offers new insight into the design of flexure-based nanopositioners for real applications. |
format | Online Article Text |
id | pubmed-7921981 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79219812021-03-03 Design and Analysis of a Novel Flexure-Based Dynamically Tunable Nanopositioner Li, Zeying Liu, Pengbo Yan, Peng Micromachines (Basel) Article Various tools, such as biomedical manipulators, optical aligners, and ultraprecision manufacturing tools, implement nanopositioners that must be dynamically tunable to satisfy the requirements of different working conditions. In this paper, we present the design and analysis of a flexure-based nanopositioner with dynamically tunable characteristics for the implementation of a high-performance servomechanism. The nanopositioner is composed of four flexure beams that are positioned in parallel and symmetric configurations sandwiched between magnetorheological elastomers (MREs). The properties of MREs impart dynamicity to the nanopositioner, allowing the workspace, stiffness, and damping characteristics in particular to be tuned under the action of an external magnetic field. By utilizing elastic beam theory and electromagnetic field coupling analysis, kinetostatic and dynamic models of the proposed nanopositioner were established to predict the variable stiffness property and dynamically tunable characteristics. The models were validated by performing a finite element analysis. Herein, it is shown that the proposed nanopositioner model can actively adjust the trade-offs between the working range, speed, and sustained load capability by changing the magnetic field. The proposed dynamic tuning method offers new insight into the design of flexure-based nanopositioners for real applications. MDPI 2021-02-19 /pmc/articles/PMC7921981/ /pubmed/33669608 http://dx.doi.org/10.3390/mi12020212 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Zeying Liu, Pengbo Yan, Peng Design and Analysis of a Novel Flexure-Based Dynamically Tunable Nanopositioner |
title | Design and Analysis of a Novel Flexure-Based Dynamically Tunable Nanopositioner |
title_full | Design and Analysis of a Novel Flexure-Based Dynamically Tunable Nanopositioner |
title_fullStr | Design and Analysis of a Novel Flexure-Based Dynamically Tunable Nanopositioner |
title_full_unstemmed | Design and Analysis of a Novel Flexure-Based Dynamically Tunable Nanopositioner |
title_short | Design and Analysis of a Novel Flexure-Based Dynamically Tunable Nanopositioner |
title_sort | design and analysis of a novel flexure-based dynamically tunable nanopositioner |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921981/ https://www.ncbi.nlm.nih.gov/pubmed/33669608 http://dx.doi.org/10.3390/mi12020212 |
work_keys_str_mv | AT lizeying designandanalysisofanovelflexurebaseddynamicallytunablenanopositioner AT liupengbo designandanalysisofanovelflexurebaseddynamicallytunablenanopositioner AT yanpeng designandanalysisofanovelflexurebaseddynamicallytunablenanopositioner |