Cargando…

Reinforcement Learning for Radiotherapy Dose Fractioning Automation

External beam radiotherapy cancer treatment aims to deliver dose fractions to slowly destroy a tumor while avoiding severe side effects in surrounding healthy tissues. To automate the dose fraction schedules, this paper investigates how deep reinforcement learning approaches (based on deep Q network...

Descripción completa

Detalles Bibliográficos
Autores principales: Moreau, Grégoire, François-Lavet, Vincent, Desbordes, Paul, Macq, Benoît
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922060/
https://www.ncbi.nlm.nih.gov/pubmed/33669816
http://dx.doi.org/10.3390/biomedicines9020214
_version_ 1783658602617110528
author Moreau, Grégoire
François-Lavet, Vincent
Desbordes, Paul
Macq, Benoît
author_facet Moreau, Grégoire
François-Lavet, Vincent
Desbordes, Paul
Macq, Benoît
author_sort Moreau, Grégoire
collection PubMed
description External beam radiotherapy cancer treatment aims to deliver dose fractions to slowly destroy a tumor while avoiding severe side effects in surrounding healthy tissues. To automate the dose fraction schedules, this paper investigates how deep reinforcement learning approaches (based on deep Q network and deep deterministic policy gradient) can learn from a model of a mixture of tumor and healthy cells. A 2D tumor growth simulation is used to simulate radiation effects on tissues and thus training an agent to automatically optimize dose fractionation. Results show that initiating treatment with large dose per fraction, and then gradually reducing it, is preferred to the standard approach of using a constant dose per fraction.
format Online
Article
Text
id pubmed-7922060
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-79220602021-03-03 Reinforcement Learning for Radiotherapy Dose Fractioning Automation Moreau, Grégoire François-Lavet, Vincent Desbordes, Paul Macq, Benoît Biomedicines Article External beam radiotherapy cancer treatment aims to deliver dose fractions to slowly destroy a tumor while avoiding severe side effects in surrounding healthy tissues. To automate the dose fraction schedules, this paper investigates how deep reinforcement learning approaches (based on deep Q network and deep deterministic policy gradient) can learn from a model of a mixture of tumor and healthy cells. A 2D tumor growth simulation is used to simulate radiation effects on tissues and thus training an agent to automatically optimize dose fractionation. Results show that initiating treatment with large dose per fraction, and then gradually reducing it, is preferred to the standard approach of using a constant dose per fraction. MDPI 2021-02-19 /pmc/articles/PMC7922060/ /pubmed/33669816 http://dx.doi.org/10.3390/biomedicines9020214 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Moreau, Grégoire
François-Lavet, Vincent
Desbordes, Paul
Macq, Benoît
Reinforcement Learning for Radiotherapy Dose Fractioning Automation
title Reinforcement Learning for Radiotherapy Dose Fractioning Automation
title_full Reinforcement Learning for Radiotherapy Dose Fractioning Automation
title_fullStr Reinforcement Learning for Radiotherapy Dose Fractioning Automation
title_full_unstemmed Reinforcement Learning for Radiotherapy Dose Fractioning Automation
title_short Reinforcement Learning for Radiotherapy Dose Fractioning Automation
title_sort reinforcement learning for radiotherapy dose fractioning automation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922060/
https://www.ncbi.nlm.nih.gov/pubmed/33669816
http://dx.doi.org/10.3390/biomedicines9020214
work_keys_str_mv AT moreaugregoire reinforcementlearningforradiotherapydosefractioningautomation
AT francoislavetvincent reinforcementlearningforradiotherapydosefractioningautomation
AT desbordespaul reinforcementlearningforradiotherapydosefractioningautomation
AT macqbenoit reinforcementlearningforradiotherapydosefractioningautomation